765 research outputs found
Appearance of classical Mixmaster Universe from the No-Boundary Quantum State
We investigate the appearance of the classical anisotropic universe from the
no-boundary quantum state according to the prescription proposed by Hartle,
Hawking and Hertog. Our model is homogeneous, anisotropic, closed universes
with a minimally coupled scalar field and cosmological constant. We found that
there are an ensemble of classical Lorentzian histories with anisotropies and
experience inflationary expansion at late time, and the probability of
histories with anisotropies are lower than isotropic histories. Thus the
no-boundary condition may be able to explain the emergence of our universe. If
the classical late time histories are extended back, some become singular by
the existence of initial anisotropies with large accelerations. However we do
not find any chaotic behavior of anisotropies near the initial singularity.Comment: 14 pages, 14 figure
Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site
AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 14C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis
Generative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to scans from real patients
Deep convolutional generative adversarial networks (GAN) allow for creating images from existing databases. We applied a modified light-weight GAN (FastGAN) algorithm to cerebral blood flow SPECTs and aimed to evaluate whether this technology can generate created images close to real patients. Investigating three anatomical levels (cerebellum, CER; basal ganglia, BG; cortex, COR), 551 normal (248 CER, 174 BG, 129 COR) and 387 pathological brain SPECTs using N-isopropyl p-I-123-iodoamphetamine (I-123-IMP) were included. For the latter scans, cerebral ischemic disease comprised 291 uni- (66 CER, 116 BG, 109 COR) and 96 bilateral defect patterns (44 BG, 52 COR). Our model was trained using a three-compartment anatomical input (dataset 'A'; including CER, BG, and COR), while for dataset 'B', only one anatomical region (COR) was included. Quantitative analyses provided mean counts (MC) and left/right (LR) hemisphere ratios, which were then compared to quantification from real images. For MC, 'B' was significantly different for normal and bilateral defect patterns (P = 0.08) reached significance relative to images of real patients. With a minimum of only three anatomical compartments serving as stimuli, created cerebral SPECTs are indistinguishable to images from real patients. The applied FastGAN algorithm may allow to provide sufficient scan numbers in various clinical scenarios, e.g., for "data-hungry" deep learning technologies or in the context of orphan diseases
Scale Factor in Double Parton Collisions and Parton Densities in Transverse Space
The scale factor , which characterizes double parton collisions
in high energy hadron interactions, is a direct manifestation of the
distribution of the interacting partons in transverse space, in such a way that
different distributions give rise to different values of in
different double parton collision processes. We work out the value of the scale
factor in a few reactions of interest, in a correlated model of the
multi-parton density of the proton recently proposed.Comment: 10 pages, 2 figure
Information-analytical systems as a basis of improving the efficiency of risk management
Building an effective system-risk management in an enterprise on the basis of integrated integration of risk management procedures into virtually all enterprise processes is associated with a wide range of tasks. Such integration processes can be simplified by using modern information technologies
A double parton scattering background to Higgs boson production at the LHC
The experimental capability of recognizing the presence of b quarks in
complex hadronic final states has addressed the attention towards final states
with b\bar{b} pairs for observing the production of the Higgs boson at the LHC,
in the intermediate Higgs mass range.We point out that double parton scattering
processes are going to represent a sizeable background to the process.Comment: 9 pages, 2 figure
Atomic matter wave scanner
We report on the experimental realization of an atom optical device, that
allows scanning of an atomic beam. We used a time-modulated evanescent wave
field above a glass surface to diffract a continuous beam of metastable Neon
atoms at grazing incidence. The diffraction angles and efficiencies were
controlled by the frequency and form of modulation, respectively. With an
optimized shape, obtained from a numerical simulation, we were able to transfer
more than 50% of the atoms into the first order beam, which we were able to
move over a range of 8 mrad.Comment: 4 pages, 4 figure
Self-similar shear-thickening behavior in CTAB/NaSal surfactant solutions
The effect of salt concentration Cs on the critical shear rate required for
the onset of shear thickening and apparent relaxation time of the
shear-thickened phase, has been investigated systematically for dilute
CTAB/NaSal solutions. Experimental data suggest a self-similar behavior of the
critical shear rate and relaxation time as functions of Cs. Specifically, the
former ~ Cs^(-6) whereas the latter ~ Cs^(6) such that an effective Weissenberg
number for the onset of the shear thickened phase is only weakly dependent on
Cs. A procedure has been developed to collapse the apparent shear viscosity
versus shear rate data obtained for various values of Cs into a single master
curve. The effect of Cs on the elastic modulus and mesh size of the
shear-induced gel phase for different surfactant concentrations is discussed.
Experiments performed using different flow cells (Couette and cone-and-plate)
show that the critical shear rate, relaxation time and the maximum viscosity
attained are geometry-independent. The elastic modulus of the gel phase
inferred indirectly by employing simplified hydrodynamic instability analysis
of a sheared gel-fluid interface is in qualitative agreement with that
predicted for an entangled phase of living polymers. A qualitative mechanism
that combines the effect of Cs on average micelle length and Debye parameter
with shear-induced configurational changes of rod-like micelles is proposed to
rationalize the self-similarity of SIS formation.Comment: 27 pages, 17 figure
Double parton scatterings in b-quark pairs production at the LHC
A sizable rate of events where two pairs of b-quarks are produced
contemporarily is foreseen at the CERN LHC, as a consequence of the large
parton luminosity. At very high energies both single and the double parton
scatterings contribute to the process, the latter mechanisms, although power
suppressed, giving the dominant contribution to the integrated cross section.Comment: 17 pages, 6 figure
- …