15 research outputs found

    Study of light-assisted collisions between a few cold atoms in a microscopic dipole trap

    Full text link
    We study light-assisted collisions in an ensemble containing a small number (~3) of cold Rb87 atoms trapped in a microscopic dipole trap. Using our ability to operate with one atom exactly in the trap, we measure the one-body heating rate associated to a near-resonant laser excitation, and we use this measurement to extract the two-body loss rate associated to light-assisted collisions when a few atoms are present in the trap. Our measurements indicate that the two-body loss rate can reach surprisingly large values beta>10^{-8} cm^{3}.s^{-1} and varies rapidly with the trap depth and the parameters of the excitation light.Comment: 6 pages, 7 figure

    Measurement of the atom number distribution in an optical tweezer using single photon counting

    Full text link
    We demonstrate in this paper a method to reconstruct the atom number distribution of a cloud containing a few tens of cold atoms. The atoms are first loaded from a magneto-optical trap into a microscopic optical dipole trap and then released in a resonant light probe where they undergo a Brownian motion and scatter photons. We count the number of photon events detected on an image intensifier. Using the response of our detection system to a single atom as a calibration, we extract the atom number distribution when the trap is loaded with more than one atom. The atom number distribution is found to be compatible with a Poisson distribution.Comment: 6 pages, 5 figure

    Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap

    Full text link
    We demonstrate experimentally the evaporative cooling of a few hundred rubidium 87 atoms in a single-beam microscopic dipole trap. Starting from 800 atoms at a temperature of 125microKelvins, we produce an unpolarized sample of 40 atoms at 110nK, within 3s. The phase-space density at the end of the evaporation reaches unity, close to quantum degeneracy. The gain in phase-space density after evaporation is 10^3. We find that the scaling laws used for much larger numbers of atoms are still valid despite the small number of atoms involved in the evaporative cooling process. We also compare our results to a simple kinetic model describing the evaporation process and find good agreement with the data.Comment: 7 pages, 5 figure

    Sub-Poissonian atom number fluctuations using light-assisted collisions

    Full text link
    We investigate experimentally the number statistics of a mesoscopic ensemble of cold atoms in a microscopic dipole trap loaded from a magneto-optical trap, and find that the atom number fluctuations are reduced with respect to a Poisson distribution due to light-assisted two-body collisions. For numbers of atoms N>2, we measure a reduction factor (Fano factor) of 0.72+/-0.07, which differs from 1 by more than 4 standard deviations. We analyze this fact by a general stochastic model describing the competition between the loading of the trap from a reservoir of cold atoms and multi-atom losses, which leads to a master equation. Applied to our experimental regime, this model indicates an asymptotic value of 3/4 for the Fano factor at large N and in steady state. We thus show that we have reached the ultimate level of reduction in number fluctuations in our system.Comment: 4 pages, 3 figure

    Imaging a single atom in a time-of-flight experiment

    Full text link
    We perform fluorescence imaging of a single 87Rb atom after its release from an optical dipole trap. The time-of-flight expansion of the atomic spatial density distribution is observed by accumulating many single atom images. The position of the atom is revealed with a spatial resolution close to 1 micrometer by a single photon event, induced by a short resonant probe. The expansion yields a measure of the temperature of a single atom, which is in very good agreement with the value obtained by an independent measurement based on a release-and-recapture method. The analysis presented in this paper provides a way of calibrating an imaging system useful for experimental studies involving a few atoms confined in a dipole trap.Comment: 14 pages, 8 figure

    Spatial Light Modulators for the Manipulation of Individual Atoms

    Full text link
    We propose a novel dipole trapping scheme using spatial light modulators (SLM) for the manipulation of individual atoms. The scheme uses a high numerical aperture microscope to map the intensity distribution of a SLM onto a cloud of cold atoms. The regions of high intensity act as optical dipole force traps. With a SLM fast enough to modify the trapping potential in real time, this technique is well suited for the controlled addressing and manipulation of arbitrarily selected atoms.Comment: 9 pages, 5 figure

    Fast cavity-enhanced atom detection with low noise and high fidelity

    Get PDF
    Cavity quantum electrodynamics describes the fundamental interactions between light and matter, and how they can be controlled by shaping the local environment. For example, optical microcavities allow high-efficiency detection and manipulation of single atoms. In this regime fluctuations of atom number are on the order of the mean number, which can lead to signal fluctuations in excess of the noise on the incident probe field. Conversely, we demonstrate that nonlinearities and multi-atom statistics can together serve to suppress the effects of atomic fluctuations when making local density measurements on clouds of cold atoms. We measure atom densities below 1 per cavity mode volume near the photon shot-noise limit. This is in direct contrast to previous experiments where fluctuations in atom number contribute significantly to the noise. Atom detection is shown to be fast and efficient, reaching fidelities in excess of 97% after 10 us and 99.9% after 30 us.Comment: 7 pages, 4 figures, 1 table; extensive changes to format and discussion according to referee comments; published in Nature Communications with open acces

    Free-Space Lossless State Detection of a Single Trapped Atom

    No full text
    4 pages, 4 figuresInternational audienceWe demonstrate the lossless state-selective detection of a single rubidium 87 atom trapped in an opticaltweezer. This detection is analogous to the one used on trapped ions. After preparation in either a dark or abright state, we probe the atom internal state by sending laser light that couples an excited state to thebright state only. The laser-induced fluorescence is collected by a high numerical aperture lens.The single-shot fidelity of the detection is 98.6 +/- 0.2% and is presently limited by the dark count noiseof the detector. The simplicity of this method opens new perspectives in view of applications to quantummanipulations of neutral atoms

    Nonlinear spectroscopy of photons bound to one atom

    No full text
    Optical nonlinearities typically require macroscopic media, thereby making their implementation at the quantum level an outstanding challenge. Here we demonstrate a nonlinearity for one atom enclosed by two highly reflecting mirrors. We send laser light through the input mirror and record the light from the output mirror of the cavity. For weak laser intensity, we find the vacuum-Rabi resonances. But for higher intensities, we find an additional resonance. It originates from the fact that the cavity can accommodate only an integer number of photons and that this photon number determines the characteristic frequencies of the coupled atom-cavity system. We selectively excite such a frequency by depositing at once two photons into the system and find a transmission which increases with the laser intensity squared. The nonlinearity differs from classical saturation nonlinearities and is direct spectroscopic proof of the quantum nature of the atom-cavity system. It provides a photon-photon interaction by means of one atom, and constitutes a step towards a two-photon gateway or a single-photon transistor.Comment: 7 figures, Nature Physic
    corecore