We perform fluorescence imaging of a single 87Rb atom after its release from
an optical dipole trap. The time-of-flight expansion of the atomic spatial
density distribution is observed by accumulating many single atom images. The
position of the atom is revealed with a spatial resolution close to 1
micrometer by a single photon event, induced by a short resonant probe. The
expansion yields a measure of the temperature of a single atom, which is in
very good agreement with the value obtained by an independent measurement based
on a release-and-recapture method. The analysis presented in this paper
provides a way of calibrating an imaging system useful for experimental studies
involving a few atoms confined in a dipole trap.Comment: 14 pages, 8 figure