249 research outputs found

    A Bad Barrel Spoils a Good Apple:How Uncertainty and Networks Affect Whether Matching Rules Can Foster Cooperation

    Get PDF
    Meritocratic matching solves the problem of cooperation by ensuring that only prosocial agents group together while excluding proselfs who are less inclined to cooperate. However, matching is less effective when estimations of individual merit rely on group-level outcomes. Prosocials in uncooperative groups are unable to change the nature of the group and are themselves forced to defect to avoid exploitation. They are then indistinguishable from proselfs, preventing them from accessing cooperative groups. We investigate informal social networks as a potential solution. Interactions in dyadic network relations provide signals of individual cooperativeness which are easier to interpret. Network relations can thus help prosocials to escape from uncooperative groups. To test our intuitions, we develop an ABM modeling cooperative behavior based on a stochastic learning model with adaptive thresholds. We investigate both randomly and homophilously formed networks. We find that homophilous networks create conditions under which meritocratic matching can function as intended. Simulation experiments identify two underlying reasons. First, dyadic network interactions in homophilous networks differentiate more between prosocials and proselfs. Second, homophilous networks create groups of prosocial agents who are aware of each other’s behavior. The stronger this prosociality segregation is, the more easily prosocials cooperate in the group context. Further analyses also highlight a downside of homophilous networks. When prosocials successfully escape from uncooperative groups, non-cooperatives have fewer encounters with prosocials, diminishing their chances to learn to cooperate through those encounters

    The Role of Community in Understanding Involvement in Community Energy Initiatives

    Get PDF
    Community energy initiatives are set up by volunteers in local communities to promote sustainable energy behaviors and help to facilitate a sustainable energy transition. A key question is what motivates people to be involved in such initiatives. We propose that next to a stronger personal motivation for sustainable energy, people’s perception that their community is motivated to engage in sustainable energy and their involvement in the community (i.e., community identification and interpersonal contact) may affect their initiative involvement. We tested this proposition with a questionnaire study among inhabitants of seven local communities (N = 439). Results suggested that community factors are uniquely related to initiative involvement (willingness to actively participate and attendance of an initiative meeting) next to personal sustainable energy motivations. In particular, stronger community identification and more interpersonal contact with other community members increased the likelihood that people become involved in a community initiative, but the perception of the sustainable energy motivation of one’s community was not uniquely related to initiative involvement. We discuss theoretical and practical implications of these findings

    Communication in Online Social Networks Fosters Cultural Isolation

    Get PDF
    Online social networks play an increasingly important role in communication between friends, colleagues, business partners, and family members. This development sparked public and scholarly debate about how these new platforms affect dynamics of cultural diversity. Formal models of cultural dissemination are powerful tools to study dynamics of cultural diversity but they are based on assumptions that represent traditional dyadic, face-To-face communication, rather than communication in online social networks. Unlike in models of face-To-face communication, where actors update their cultural traits after being influenced by one of their network contacts, communication in online social networks is often characterized by a one-To-many structure, in that users emit messages directly to a large number of network contacts. Using analytical tools and agent-based simulation, we show that this seemingly subtle difference can have profound implications for emergent dynamics of cultural dissemination. In particular, we show that within the framework of our model online communication fosters cultural diversity to a larger degree than offline communication and it increases chances that individuals and subgroups become culturally isolated from their network contacts

    An Agent-Based Model of Collective Emotions in Online Communities

    Full text link
    We develop a agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agents individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a superlinear feedback between the information field and the agent's arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities.Comment: European Physical Journal B (in press), version 2 with extended introduction, clarification

    Individualization as driving force of clustering phenomena in humans

    Get PDF
    One of the most intriguing dynamics in biological systems is the emergence of clustering, the self-organization into separated agglomerations of individuals. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is clustering of opinions in human populations. The puzzle is particularly pressing if opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing opinion formation models suggest that "monoculture" is unavoidable in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness did not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cascades that inevitably lead to monoculture, while larger noise disrupts opinion clusters and results in rampant individualism without any social structure. Our solution of the puzzle builds on recent empirical research, combining the integrative tendencies of social influence with the disintegrative effects of individualization. A key element of the new computational model is an adaptive kind of noise. We conduct simulation experiments to demonstrate that with this kind of noise, a third phase besides individualism and monoculture becomes possible, characterized by the formation of metastable clusters with diversity between and consensus within clusters. When clusters are small, individualization tendencies are too weak to prohibit a fusion of clusters. When clusters grow too large, however, individualization increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure
    • …
    corecore