97 research outputs found

    Critical Exponents from AdS/CFT with Flavor

    Full text link
    We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplet flavor fields coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory, formulated on curved four-manifolds, in the limits of large Nc and large 't Hooft coupling. The gravitational duals are probe D-branes in global thermal AdS. These D-branes may undergo a topology-changing transition in the bulk. The D-brane embeddings near the point of the topology change exhibit a scaling symmetry. The associated scaling exponents can be either real- or complex-valued. Which regime applies depends on the dimensionality of a collapsing submanifold in the critical embedding. When the scaling exponents are complex-valued, a first-order transition associated with the flavor fields appears in the dual field theory. Real scaling exponents are expected to be associated with a continuous transition in the dual field theory. For one example with real exponents, the D7-brane, we study the transition in detail. We find two field theory observables that diverge at the critical point, and we compute the associated critical exponents. We also present analytic and numerical evidence that the transition expresses itself in the meson spectrum as a non-analyticity at the critical point. We argue that the transition we study is a true phase transition only when the 't Hooft coupling is strictly infinite.Comment: 31 pages, 21 eps files in 12 figures; v2 added one reference and one footnote, version published in JHE

    Universal Holographic Chiral Dynamics in an External Magnetic Field

    Get PDF
    In this work we further extend the investigation of holographic gauge theories in external magnetic fields, continuing earlier work. We study the phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions, using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy effective actions of the corresponding pseudo Goldstone bosons and study their dispersion relations. The D3/D7 system exhibits the usual Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion relation, while the D3/D5 system exhibits a quadratic non-relativistic dispersion relation and a modified linear GMOR relation. The low energy effective action of the D3/D5 system is related to that describing magnon excitations in a ferromagnet. We also study properties of general Dp/Dq systems in an external magnetic field and verify the universality of the magnetic catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde

    Holographic Flavor Transport in Arbitrary Constant Background Fields

    Full text link
    We use gauge-gravity duality to compute a new transport coefficient associated with a number Nf of massive N=2 supersymmetric hypermultiplet fields propagating through an N=4 SU(Nc) super-Yang-Mills theory plasma in the limits of large Nc and large 't Hooft coupling, with Nf << Nc. We introduce a baryon number density as well as arbitrary constant electric and magnetic fields, generalizing previous calculations by including a magnetic field with a component parallel to the electric field. We can thus compute all components of the conductivity tensor associated with transport of baryon number charge, including a component never before calculated in gauge-gravity duality. We also compute the contribution that the flavor degrees of freedom make to the stress-energy tensor, which exhibits divergences associated with the rates of energy and momentum loss of the flavor degrees of freedom. We discuss two currents that are free from these divergences, one of which becomes anomalous when the magnetic field has a component parallel to the electric field and hence may be related to recent study of charge transport in the presence of anomalies.Comment: 27 page

    Dynamics of the chiral phase transition from AdS/CFT duality

    Full text link
    We use Lorentzian signature AdS/CFT duality to study a first order phase transition in strongly coupled gauge theories which is akin to the chiral phase transition in QCD. We discuss the relation between the latent heat and the energy (suitably defined) of the component of a D-brane which lies behind the horizon at the critical temperature. A numerical simulation of a dynamical phase transition in an expanding, cooling Quark-Gluon plasma produced in a relativistic collision is carried out.Comment: 30 pages, 5 figure

    Flavor-symmetry Breaking with Charged Probes

    Full text link
    We discuss the recombination of brane/anti-brane pairs carrying D3D3 brane charge in AdS5×S5AdS_5 \times S^5. These configurations are dual to co-dimension one defects in the N=4{\cal N}=4 super-Yang-Mills description. Due to their D3D3 charge, these defects are actually domain walls in the dual gauge theory, interpolating between vacua of different gauge symmetry. A pair of unjoined defects each carry localized (2+1)(2+1) dimensional fermions and possess a global U(N)×U(N)U(N)\times U(N) flavor symmetry while the recombined brane/anti-brane pairs exhibit only a diagonal U(N). We study the thermodynamics of this flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure

    Sum rules, plasma frequencies and Hall phenomenology in holographic plasmas

    Get PDF
    We study the AC optical and hall conductivities of Dp/Dq-branes intersections in the probe approximation and use sum-rules to study various associated transport coefficients. We determine that the presence of massive fundamental matter, as compared to massless fundamental matter described holographically by a theory with no dimensional defects, reduces the plasma frequency. We further show that this is not the case when the brane intersections include defects. We discuss in detail how to implement correctly the regularization of retarded Green's functions so that the dispersion relations are satisfied and the low energy behaviour of the system is physically realistic.Comment: 25 pages, 5 figures. v2.minor changes, published versio

    AdS/CFT with Flavour in Electric and Magnetic Kalb-Ramond Fields

    Full text link
    We investigate gauge/gravity duals with flavour for which pure-gauge Kalb-Ramond B fields are turned on in the background, into which a D7 brane probe is embedded. First we consider the case of a magnetic field in two of the spatial boundary directions. We show that at finite temperature, i.e. in the AdS-Schwarzschild background, the B field has a stabilizing effect on the mesons and chiral symmetry breaking occurs for a sufficiently large value of the B field. Then we turn to the electric case of a B field in the temporal direction and one spatial boundary direction. In this case, there is a singular region in which it is necessary to turn on a gauge field on the brane in order to ensure reality of the brane action. We find that the brane embeddings are attracted towards this region. Far away from this region, in the weak field case at zero temperature, we investigate the meson spectrum and find a mass shift similar to the Stark effect.Comment: 34 pages, 18 figures, v2: added references and comments on mode decoupling, on thermodynamics and holographic renormalisation, JHEP style, v3: Final published versio

    Inverse magnetic catalysis in dense holographic matter

    Full text link
    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition into the lowest Landau level. We estimate IMC to persist up to 10^{19} G at low temperatures.Comment: 42 pages, 11 figures, v3: extended discussion; new appendix D; references added; version to appear in JHE

    Toward a Holographic Model of Superconducting Fermions

    Full text link
    We use the AdS/CFT correspondence to study N=4 supersymmetric SU(Nc) Yang-Mills theory, in the limits of large Nc and large 't Hooft coupling, coupled to a number Nf of massless hypermultiplet fields in the fundamental representation of the gauge group. We identify a U(1) subgroup of the R-symmetry under which the fermions in the hypermultiplet are charged but the scalars are not. All the hypermultiplet fields are also charged under a U(1) baryon number symmetry. We introduce an external magnetic field for the baryon number U(1), which triggers the spontaneous breaking of the U(1) R-symmetry, and we then introduce a chemical potential for the U(1) R-charge, producing a state with a nonzero density of the U(1) R-charge. The system should then exhibit superconductivity of the U(1) R-charge. The dual supergravity description is a number Nf of D7-branes in AdS5 x S5 with angular momentum on the S5 and a worldvolume magnetic field. We study the zero-temperature thermodynamics of the system, and find that for sufficiently large magnetic field the system prefers to be in the symmetry-broken phase. For smaller magnetic fields we find a discontinuous free energy, indicating that our gravitational setup does not capture all equilibrium states of the field theory.Comment: 32 pages, 22 eps files in 9 figure

    Thermodynamics of Holographic Defects

    Full text link
    Using the AdS/CFT correspondence, we study the thermodynamic properties and the phase diagram of matter fields on (2+1)-dimensional defects coupled to a (3+1)-dimensional N=4 SYM "heat bath". Considering a background magnetic field, (net) quark density, defect "magnitude" ÎŽNc\delta N_c and the mass of the matter, we study the defect contribution to the thermodynamic potentials and their first and second derivatives to map the phases and study their physical properties. We find some features that are qualitatively similar to other systems e.g. in (3+1) dimensions and a number of features that are particular to the defect nature, such as its magnetic properties, unexpected properties at T->0 and finite density; and the finite ÎŽNc\delta N_c effects, e.g. a diverging susceptibility and vanishing density of states at small temperatures, a physically consistent negative heat capacity and new types of consistent phases.Comment: 33 pages, 16 figures (jpg and pdf), typos fixed and references added, final version published in JHE
    • 

    corecore