128 research outputs found

    Present status of the personal neutron dosemeter based on direct ion storage

    Get PDF
    In this paper the present status of the Direct Ion Storage Neutron (DIS-N) prototype dosemeter (RADOS) is described. The separation of neutron from photon dose equivalent has been improved by adding tin shieldings. The neutron energy response has been changed by additional plastic covers containing 40% B4C in order to reduce the over-response to thermal neutrons. The responses of the dosemeters were determined for standard photon and neutron fields (monoenergetic neutrons, neutron sources and simulated workplace fields). Irradiations in real workplaces were also performed. The dependence of the neutron response on the angle of incidence was measured for different neutron source

    Performance of a personal neutron dosemeter based on direct ion storage at workplace fields in the nuclear industry

    Get PDF
    In the framework of the EVIDOS project, funded by the EC, measurements were carried out using dosemeters, based on ionisation chambers with direct ion storage (DIS-N), at several workplace fields, namely, at a fuel processing plant, a boiling and a pressurised water reactor, and near transport and storage casks. The measurements and results obtained with the DIS-N in these workplaces, which are representative for the nuclear industry, are described in this study. Different dosemeter configurations of converter and shielding materials were considered. The results are compared with values for personal dose equivalent which were assessed within the EVIDOS project by other partners. The advantages and limitations of the DIS-N dosemeter are discusse

    Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry

    Get PDF
    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discusse

    Progress report of the CR-39 neutron personal monitoring service at PSI

    Get PDF
    At the Paul Scherrer Institute a personal neutron dosimetry system based on chemically etched CR-39 detectors and automatic track counting is in routine use since the beginning of 1998. The quality of the CR-39 detectors has always been a crucial aspect to maintain a trustable personal neutron dosimetry system. This paper summarises the 7 y experience in routine use. The effect of detector material defects which could lead to false positive neutron doses is described. The potentiality of improving the background statistics by extending the pre-etch time is investigated and involves as a drawback a quite lower sensitivity to thermal neutrons. Furthermore, the impact of small changes in the production process of the detectors on the response to fast and thermal neutrons is shown. For the personal dosimetry at CERN, a new dosimetry concept was launched by combining a CR-39 neutron dosemeter with a Direct-Ion Storage (DIS) dosemeter for photon and beta radiation. The usage period of the CR-39 dosemeters is prolonged now from 3 months up to 12 months. In this context, the long-term behaviour over 1 y of the background track density and the response to Am-Be are describe

    Influence of variation of etching conditions on the sensitivity of PADC detectors with a new evaluation method

    Get PDF
    At the Paul Scherrer Institut, a personal neutron dosimetry system based on chemically etched poly allyl diglycol carbonate (PADC) detectors and an automatic track counting (Autoscan 60) for neutron dose evaluations has been in routine use since 1998. Today, the hardware and the software of the Autoscan 60 are out of date, no spare components are available anymore and more sophisticated image-analysis systems are already developed. Therefore, a new evaluation system, the ‘TASLIMAGE', was tested thoroughly in 2009 for linearity, reproducibility, influence of etching conditions and so forth, with the intention of replacing the Autoscan 60 in routine evaluations. The TASLIMAGE system is based on a microscope (high-quality Nikon optics) and an ultra-fast three-axis motorised control for scanning the detectors. In this paper, the TASLIMAGE system and its possibilities for neutron dose calculation are explained in more detail and the study of the influence of the variation of etching conditions on the sensitivity and background of the PADC detectors is described. The etching temperature and etching duration were varied, which showed that the etching conditions do not have a significant influence on the results of non-irradiated detectors. However, the sensitivity of irradiated detectors decreases by 5 % per 1°C when increasing the etching temperature. For the variation of the etching duration, the influence on the sensitivity of irradiated detectors is less pronounce

    Ignition and Combustion Characteristics of Pure Bulk Metals: Normal-Gravity Test Results

    Get PDF
    An experimental apparatus has been designed for the study of bulk metal ignition under elevated, normal and reduced gravity environments. The present work describes the technical characteristics of the system, the analytical techniques employed, the results obtained from the ignition of a variety of metals subjected to normal gravity conditions and the first results obtained from experiments under elevated gravity. A 1000 W xenon short-arc lamp is used to irradiate the top surface of a cylindrical metal specimen 4 mm in diameter and 4 mm high in a quiescent pure-oxygen environment at 0.1 MPa. Iron, titanium, zirconium, magnesium, zinc, tin, and copper specimens are investigated. All these metals exhibit ignition and combustion behavior varying in strength and speed. Values of ignition temperatures below, above or in the range of the metal melting point are obtained from the temperature records. The emission spectra from the magnesium-oxygen gas-phase reaction reveals the dynamic evolution of the ignition event. Scanning electron microscope and x-ray spectroscopic analysis provide the sequence of oxide formation on the burning of copper samples. Preliminary results on the effect of higher-than-normal gravity levels on the ignition of titanium specimens is presented

    Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields

    Get PDF
    Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presente

    Summary of personal neutron dosemeter results obtained within the EVIDOS project

    Get PDF
    Within the EC project EVIDOS (‘Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'), different types of active neutron personal dosemeters (and some passive ones) were tested in workplace fields at nuclear installations in Europe. The results of the measurements which have been performed up to now are summarised and compared to our currently best estimates of the personal dose equivalent Hp(10). Under- and over-readings by more than a factor of two for the same dosemeter in different workplace fields indicate that in most cases the use of field-specific correction factors is require

    Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project

    Get PDF
    Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discusse

    Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part II: conclusions and recommendations

    Get PDF
    The paper presents the main conclusions and recommendations derived from the EVIDOS project, which is supported by the European Commission within the 5th Framework Programme. EVIDOS aims at evaluating state of the art neutron dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This analysis complements a series of individual papers which present detailed results and it summarises the main findings from a practical point of view. Conclusions and recommendations are given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosemeter result
    corecore