359 research outputs found

    The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying

    Full text link
    Nanophotonic technologies offer great promise for ultra-low power optical signal processing, but relatively few nonlinear-optical phenomena have yet been explored as bases for robust digital modulation/switching~\cite{Yang07,Fara08,Liu10,Noza10}. Here we show that a single two-level system (TLS) coupled strongly to an optical resonator can impart binary phase modulation on a saturating probe beam. Our experiment relies on spontaneous emission to induce occasional transitions between positive and negative phase shifts---with each such edge corresponding to a dissipated energy of just one photon (0.23\approx 0.23 aJ)---but an optical control beam could be used to trigger additional phase switching at signalling rates above this background. Although our ability to demonstrate controlled switching in our atom-based experiment is limited, we discuss prospects for exploiting analogous physics in a nanophotonic device incorporating a quantum dot as the TLS to realize deterministic binary phase modulation with control power in the aJ/edge regime.Comment: 7 pages, 4 figure

    Reflective silicon binary diffraction grating for visible wavelengths

    Get PDF
    We introduce a new device based on sub-wavelength resonant gratings. We built a silicon-on-oxide reflective binary grating for visible light that mimics the functionality of a blazed diffraction grating in a flat geometry

    Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond

    Get PDF
    The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ~70 by coupling to a photonic crystal resonator fabricated in monocrystalline diamond using standard semiconductor fabrication techniques. Photon correlation measurements on the spectrally filtered zero-phonon line show antibunching, a signature that the collected photoluminescence is emitted primarily by a single nitrogen-vacancy center. The linewidth of the coupled nitrogen-vacancy center and the spectral diffusion are characterized using high-resolution photoluminescence and photoluminescence excitation spectroscopy

    Quantum dots in photonic crystal cavities

    Get PDF
    During the past two decades, the development of micro- and nano-fabrication technologies has positively impacted multiple areas of science and engineering. In the photonics community, these technologies had numerous early adopters, which led to photonic devices that exhibit features at the nano-scale and operate at the most fundamental level of light–matter interaction [28, 39, 18, 29]. One of the leading platforms for these types of devices is based on gallium arsenide (GaAs) planar photonic crystals (PC) with embedded indium arsenide (InAs) quantum dots (QDs). The PC architecture is advantageous because it enables monolithic fabrication of photonic networks for efficient routing of light signals of the chip [26]. At the same time, PC devices have low loss and ultra-small optical mode volumes, which enable strong light–matter interactions. The InAs quantum dots are well suited for quantum photonic applications because they have excellent quantum efficiencies, large dipole moments, and a variety of quantum states that can be optically controlled [24, 3]

    Properties of implanted and CVD incorporated nitrogen-vacancy centers: preferential charge state and preferential orientation

    Get PDF
    The combination of the long electron state spin coherence time and the optical coupling of the ground electronic states to an excited state manifold makes the nitrogen-vacancy (NV) center in diamond an attractive candidate for quantum information processing. To date the best spin and optical properties have been found in centers deep within the diamond crystal. For useful devices it will be necessary to engineer NVs with similar properties close to the diamond surface. We report on properties including charge state control and preferential orientation for near surface NVs formed either in CVD growth or through implantation and annealing

    Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities

    Get PDF
    In this work we present a platform for testing the device performance of a cavity-emitter system, using an ensemble of emitters and a tapered optical fiber. This method provides high-contrast spectra of the cavity modes, selective detection of emitters coupled to the cavity, and an estimate of the device performance in the single- emitter case. Using nitrogen-vacancy (NV) centers in diamond and a GaP optical microcavity, we are able to tune the cavity onto the NV resonance at 10 K, couple the cavity-coupled emission to a tapered fiber, and measure the fiber-coupled NV spontaneous emission decay. Theoretically we show that the fiber-coupled average Purcell factor is 2-3 times greater than that of free-space collection; although due to ensemble averaging it is still a factor of 3 less than the Purcell factor of a single, ideally placed center.Comment: 15 pages, 6 figure

    Optical Spectroscopy and Decoherence Studies of Yb3+:YAG at 968 nm

    Get PDF
    The F7/22↔F5/22 optical transitions of Yb3+ doped into Y3Al5O12 (YAG) were studied for potential quantum information and photonic signal processing applications. Absorption and fluorescence spectroscopy located the energy levels of the ground F7/22 and excited F5/22 manifolds, allowing inconsistencies between previous assignments of crystal field splittings in the literature to be resolved. These measurements reveal an unusually large splitting between the first and second levels in both the ground and excited multiplets, potentially providing for reduced sensitivity to thermally induced decoherence and spin-lattice relaxation. Spectral hole burning through two-level saturation was observed, determining the excited state lifetime to be 860 μs and resolving ambiguities in previous fluorescence measurements that were caused by the large radiation trapping effects in this material. Optical decoherence measurements using two-pulse photon echoes gave a homogeneous linewidth of 18 kHz for an applied magnetic field of 1 T, narrowing to 5 kHz at 2.5 T. The observed decoherence was described by spectral diffusion attributed to Yb3+−Yb3+ magnetic dipole interactions. Laser absorption determined an inhomogeneous linewidth of 3.6 GHz for this transition in this 0.05%-doped crystal, which is narrower than for any other rare-earth-ion transition previously studied in the YAG host. The temperature dependence of the transition energy and linewidth of the lowest F7/22 to lowest F5/22 transition centered at 968.571 nm measured from 4 K to 300 K was well described by phonon scattering at higher temperatures, with an additional anomalous linear temperature-dependent broadening at temperatures below 80 K. Two magnetically inequivalent subgroups of Yb3+ ions were identified when a magnetic field was applied along the ⟨111⟩ axis, as expected for the D2 sites in the cubic symmetry crystal, with ground and excited state effective g-values of gg=3.40 (3.34) and ge=1.04 (2.01), respectively. Together with the convenient diode laser wavelength of this transition, our study suggests that Yb3+:YAG is a promising material system for spectral hole burning and quantum information applications

    Optical Spectroscopy and Decoherence Studies of Yb3+:YAG at 968 nm

    Get PDF
    The F7/22↔F5/22 optical transitions of Yb3+ doped into Y3Al5O12 (YAG) were studied for potential quantum information and photonic signal processing applications. Absorption and fluorescence spectroscopy located the energy levels of the ground F7/22 and excited F5/22 manifolds, allowing inconsistencies between previous assignments of crystal field splittings in the literature to be resolved. These measurements reveal an unusually large splitting between the first and second levels in both the ground and excited multiplets, potentially providing for reduced sensitivity to thermally induced decoherence and spin-lattice relaxation. Spectral hole burning through two-level saturation was observed, determining the excited state lifetime to be 860 μs and resolving ambiguities in previous fluorescence measurements that were caused by the large radiation trapping effects in this material. Optical decoherence measurements using two-pulse photon echoes gave a homogeneous linewidth of 18 kHz for an applied magnetic field of 1 T, narrowing to 5 kHz at 2.5 T. The observed decoherence was described by spectral diffusion attributed to Yb3+−Yb3+ magnetic dipole interactions. Laser absorption determined an inhomogeneous linewidth of 3.6 GHz for this transition in this 0.05%-doped crystal, which is narrower than for any other rare-earth-ion transition previously studied in the YAG host. The temperature dependence of the transition energy and linewidth of the lowest F7/22 to lowest F5/22 transition centered at 968.571 nm measured from 4 K to 300 K was well described by phonon scattering at higher temperatures, with an additional anomalous linear temperature-dependent broadening at temperatures below 80 K. Two magnetically inequivalent subgroups of Yb3+ ions were identified when a magnetic field was applied along the ⟨111⟩ axis, as expected for the D2 sites in the cubic symmetry crystal, with ground and excited state effective g-values of gg=3.40 (3.34) and ge=1.04 (2.01), respectively. Together with the convenient diode laser wavelength of this transition, our study suggests that Yb3+:YAG is a promising material system for spectral hole burning and quantum information applications

    Fast Electrical Control of a Quantum Dot Strongly Coupled to a Nano-resonator

    Get PDF
    The resonance frequency of an InAs quantum dot strongly coupled to a GaAs photonic crystal cavity was electrically controlled via quantum confined Stark effect. Stark shifts up to 0.3meV were achieved using a lateral Schottky electrode that created a local depletion region at the location of the quantum dot. We report switching of a probe laser coherently coupled to the cavity up to speeds as high as 150MHz, limited by the RC constant of the transmission line. The coupling rate and the magnitude of the Stark shift with electric field were investigated while coherently probing the system
    corecore