13,096 research outputs found
Measurement of uncertainty costs with dynamic traffic simulations
Non-recurrent congestion in transportation networks occurs as a consequence of stochastic factors affecting demand and supply. Intelligent Transportation Systems such as Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) are designed in order to reduce the impacts of non-recurrent congestion by providing information to a fraction of users or by controlling the variability of traffic flows. For these reasons, the design of ATIS and ATMS requires reliable forecast of non-recurrent congestion. This paper proposes a new method to measure the impacts of non-recurrent congestion on travel costs by taking risk aversion into account. The traffic model is based on the dynamic traffic simulations model METROPOLIS. Incidents are generated randomly by reducing the capacity of the network. Users can instantaneously adapt to the unexpected travel conditions or can also change their behavior via a day-to-day adjustment process. Comparisons with incident-free simulations provide a benchmark for potential travel time savings that can be brought in by a state-of-the-art information system. We measure the impact of variable travel conditions by describing the willingness to pay to avoid risky or unreliable journeys. Indeed, for risk averse drivers, any uncertainty corresponds to a utility loss. This utility loss is computed for several levels of network disruption. The main results of the paper is that the utility loss due to uncertainty is of the same order of magnitude as the total travel costs.
Developments of the pinned photodiode terahertz rectifier
This paper presents we presents a development of the structure of the pinned photodiode terahertz rectifier, in which the metal whisker of the antenna is separated from the semiconductor by a silane oxide layer, in order to reduce the surface defectiveness. The rectifies is the basic component of an image detection system based on the structure of actual CMOS image detectors. The structure combines a nano-antenna, fabricated on the top of a standard image sensor, the rectifier, and the readout electronics. The rectifier device proposed has vertical extension of some tenths of nanometers, can be created at the foot of the nano-whisker at the end of the terahertz antenna, above the storage well
Prognostic factors and biomarkers of responses to immune checkpoint inhibitors in lung cancer
Manipulation of the immune response is a game changer in lung cancer treatment, revolutionizing management. PD1 and CTLA4 are dynamically expressed on different T cell subsets that can either disrupt or sustain tumor growth. Monoclonal antibodies (MoAbs) against PD1/PDL1 and CTLA4 have shown that inhibitory signals can be impaired, blocking T cell activation and function. MoAbs, used as both single-agents or in combination with standard therapy for the treatment of advanced non-small cell lung cancer (NSCLC), have exhibited advantages in terms of overall survival and response rate; nivolumab, pembrolizumab, atezolizumab and more recently, durvalumab, have already been approved for lung cancer treatment and more compounds are in the pipeline. A better understanding of signaling elicited by these antibodies on T cell subsets, as well as identification of biological determinants of sensitivity, resistance and correlates of efficacy, will help to define the mechanisms of antitumor responses. In addition, the relevance of T regulatory cells (Treg) involved in immune responses in cancer is attracting increasing interest. A major challenge for future research is to understand why a durable response to immune checkpoint inhibitors (ICIs) occurs only in subsets of patients and the mechanisms of resistance after an initial response. This review will explore current understanding and future direction of research on ICI treatment in lung cancer and the impact of tumor immune microenvironment n influencing clinical responses
Wind of change: Better air for microbial environmental control
Background: The COVID19 epidemic highlighted the importance of air in the transmission of pathogens. Air
disinfection is one of the key points to reduce the risk of transmission both in the health sector and in public, civil
and industrial environments. All bacteria and viruses tested to date can be inactivated by UV-C rays. Laboratory
tested UV-C systems are increasingly popular and proposed as effective technologies for air purification; few
studies have evaluated their performance in populated indoor environments. The aim of this investigation was to
evaluate the effectiveness of a UV-C disinfection system for air in a real working context.
Methods: This experimental study was conducted between December 2020 and February 2021 in an office of the
Department of Molecular and Developmental Medicine of the University of Siena, Italy. A pre-final version air
purifier (Cleaning Air T12), capable of treating 210 m3/h of air, was first tested for its ability to filter particulates
and reduce microbial air contamination in the absence of people. Subsequently, the experiments were conducted
in the presence of 3–5 subjects who worked for several hours in an office. During the tests, microbiological
samples of air were collected in real time, switching the system on and off periodically. Air samples were
collected and incubated on Petri dishes at 36 ◦C and 22 ◦C. Statistical analysis was performed with Stata 16
software assuming a significance level of 95%. An interpolating model was identified to describe the dynamics of
contamination reduction when the device operates.
Results: Preliminary tests showed a significant 62.5% reduction in Colony-Forming Units (CFUs) with 36 ◦C
incubation. Reductions in the particulate component were also observed. In the main test, comparison of CFU
data, between the device-on phase (90 min) and the subsequent device-off phase (60 min), showed statistically
significant increase (p = 0.001) of environmental contamination passing from a mean of 86.6 (65.8–107.4) to
171.1 (143.9–198.3) CFU/m3, that is a rise of about 100%. The interpolating model exhibited a good fit of CFU
reduction trend with the device on.
Conclusions: The system, which mainly uses UV-C lamps for disinfection, was able to significantly reduce envi-
ronmental and human contamination in real time. Experimental tests have shown that as soon as the device is
switched off, after at least half an hour of operation, the healthiness of the air decreases drastically within 10
minutes, bringing the airborne microbial contamination (induced by the presence of operators in the environ-
ment) to levels even higher than 150% of the last value with the device on. Re-engineering strategies for system
improvement were also discusse
Measurements and tests on FBK silicon sensors with an optimized electronic design for a CTA camera
In October 2013, the Italian Ministry approved the funding of a Research &
Development (R&D) study, within the "Progetto Premiale TElescopi CHErenkov made
in Italy (TECHE)", devoted to the development of a demonstrator for a camera
for the Cherenkov Telescope Array (CTA) consortium. The demonstrator consists
of a sensor plane based on the Silicon Photomultiplier (SiPM) technology and on
an electronics designed for signal sampling. Preliminary tests on a matrix of
sensors produced by the Fondazione Bruno Kessler (FBK-Trento, Italy) and on
electronic prototypes produced by SITAEL S.p.A. will be presented. In
particular, we used different designs of the electronics in order to optimize
the output signals in terms of tail cancellation. This is crucial for
applications where a high background is expected, as for the CTA experiment.Comment: 5 pages, 6 figures; Proceedings of the 10th Workshop on Science with
the New Generation of High-Energy Gamma-ray experiments (SciNeGHE) -
PoS(Scineghe2014)00
Genomic features of Klebsiella isolates from artisanal ready-to-eat food production facilities
Increasing reports on K. pneumoniae strains with antimicrobial resistance and virulence traits from food and farm animals are raising concerns about the potential role of Klebsiella spp. as a foodborne pathogen. This study aimed to report and characterize Klebsiella spp. isolates from two artisanal ready-to-eat food (soft cheese and salami) producing facilities, and to track similar genotypes in different ecological niches. Over 1170 samples were collected during the whole production chain of different food batches. The overall Klebsiella prevalence was 6%. Strains were classified into the three Klebsiella species complexes: K. pneumoniae (KpSC, n = 17), K. oxytoca (KoSC, n = 38) and K. planticola (KplaSC, n = 18). Despite high genetic diversity we found in terms of known and new sequence types (STs), core genome phylogeny revealed clonal strains persisting in the same processing setting for over 14 months, isolated from the environment, raw materials and end-products. Strains showed a natural antimicrobial resistance phenotype-genotype. K. pneumoniae strains showed the highest virulence potential, with sequence types ST4242 and ST107 strains carrying yersiniabactin ybt16 and aerobactin iuc3. The latter was detected in all K. pneumoniae from salami and was located on a large conjugative plasmid highly similar (97% identity) to iuc3+ plasmids from human and pig strains circulating in nearby regions of Italy. While identical genotypes may persist along the whole food production process, different genotypes from distinct sources in the same facility shared an iuc3-plasmid. Surveillance in the food chain will be crucial to obtain a more comprehensive picture of the circulation of Klebsiella strains with pathogenic potential
Surgical stress and metabolic response after totally laparoscopic right colectomy
No clear consensus on the need to perform an intracorporeal anastomosis (IA) after laparoscopic right colectomy is currently available. One of the potential benefits of intracorporeal anastomosis may be a reduction in surgical stress. Herein, we evaluated the surgical stress response and the metabolic response in patients who underwent right colonic resection for colon cancer. Fifty-nine patients who underwent laparoscopic resection for right colon cancer were randomized to receive an intracorporeal or an extracorporeal anastomosis (EA). Data including demographics (age, sex, BMI and ASA score), pathological (AJCC tumour stage and tumour localization) and surgical results were recorded. Moreover, to determine the levels of the inflammatory response, mediators, such as C-reactive protein (CRP), tumour necrosis factor (TNF), interleukin 1β (IL-1β), IL-6, IL-10, and IL-13, were evaluated. Similarly, cortisol and insulin levels were evaluated as hormonal responses to surgical stress. We found that the proinflammatory mediator IL-6, CRP, TNF and IL-1β levels, were significantly reduced in IA compared to EA. Concurrently, an improved profile of the anti-inflammatory cytokines IL-10 and IL-13 was observed in the IA group. Relative to the hormone response to surgical stress, cortisol was increased in patients who underwent EA, while insulin was reduced in the EA group. Based on these results, surgical stress and metabolic response to IA justify advocating the adoption of a totally laparoscopic approach when performing a right colectomy for cancer. This trial is registered on ClinicalTrials.gov (ID: NCT03422588)
Changes in phenolics and fatty acids composition and related gene expression during the development from seed to leaves of three cultivated cardoon genotypes
Cultivated cardoon (Cynara cardunculus var. altilis) has long been used as a food and medicine remedy and nowadays is considered a functional food. Its leaf bioactive compounds are mostly represented by chlorogenic acids and coumaroyl derivatives, known for their nutritional value and bioactivity. Having antioxidant and hepatoprotective properties, these molecules are used for medicinal purposes. Apart from the phenolic compounds in green tissues, cultivated cardoon is also used for the seed oil, having a composition suitable for the human diet, but also valuable as feedstock for the production of biofuel and biodegradable bioplastics. Given the wide spectrum of valuable cardoon molecules and their numerous industrial applications, a detailed characterization of different organs and tissues for their metabolic profiles as well as an extensive transcriptional analysis of associated key biosynthetic genes were performed to provide a deeper insight into metabolites biosynthesis and accumulation sites. This study aimed to provide a comprehensive analysis of the phenylpropanoids profile through UHPLC-Q-Orbitrap HRMS analysis, of fatty acids content through GC-MS analysis, along with quantitative transcriptional analyses by qRT-PCR of hydroxycinnamoyl-quinate transferase (HQT), stearic acid desaturase (SAD), and fatty acid desaturase (FAD) genes in seeds, hypocotyls, cotyledons and leaves of the cardoon genotypes “Spagnolo”, “Bianco Avorio”, and “Gigante”. Both oil yield and total phenols accumulation in all the tissues and organs indicated higher production in “Bianco Avorio” and “Spagnolo” than in “Gigante”. Antioxidant activity evaluation by DPPH, ABTS, and FRAP assays mirrored total phenols content. Overall, this study provides a detailed analysis of tissue composition of cardoon, enabling to elucidate value-added product accumulation and distribution during plant development and hence contributing to better address and optimize the sustainable use of this natural resource. Besides, our metabolic and transcriptional screening could be useful to guide the selection of superior genotypes
Proteomic approach for the detection of biomarkers ofexposure in mussels exposed to PCB
In the current study, a preliminary proteomic approach
has been used in Mytilus galloprovincialis as a screening of changes in protein expression caused by a mixture of polychlorinated biphenyls (PCBs), in order to characterize the effects of PCBs on the protein profile and to develop new molecular biomarkers, after identifying the proteins more drastically altered. Methods:Mussels were exposed for three weeks to three polychlorinated biphenyls under controlled conditions. The edible parts were homogenized and lyophilized. Extracted proteins were quantified and separated by two-dimensional electrophoresis (2-DE) in IPG strips (pH 3–10).
The protein spots in gels were visualized by Coomassie Brilliant
Blue staining. Gel images were obtained using a Image Scanner.
Image analysis included spot detection, quantification and matching. The volume of each spot from each gel was normalized to the total gel spot volume in order to correct it for differences in gel staining. More than 500 spots were resolved and altered expression was qualitatively detected. Results and conclusions of the study: Our results showed a well conserved protein pattern regardless of the treatments, demonstrating that the exposition to the PCB mixture did not impair the normal physiological function of the mussels. However, the levels of a restricted number of proteins were clearly and reproducibly affected by the treatment; therefore, these polypeptides were considered promising biomarker candidates. In conclusion, even if further studies are needed to validate these findings, our data demonstrated that proteomic approach represents a valuable tool for identifying biomarkers of exposure to environmental contaminants
- …