10,799 research outputs found

    A new two-dimensional lattice model that is "consistent around a cube"

    Full text link
    For two-dimensional lattice equations one definition of integrability is that the model can be naturally and consistently extended to three dimensions, i.e., that it is "consistent around a cube" (CAC). As a consequence of CAC one can construct a Lax pair for the model. Recently Adler, Bobenko and Suris conducted a search based on this principle and certain additional assumptions. One of those assumptions was the "tetrahedron property", which is satisfied by most known equations. We present here one lattice equation that satisfies the consistency condition but does not have the tetrahedron property. Its Lax pair is also presented and some basic properties discussed.Comment: 8 pages in LaTe

    Difference schemes with point symmetries and their numerical tests

    Full text link
    Symmetry preserving difference schemes approximating second and third order ordinary differential equations are presented. They have the same three or four-dimensional symmetry groups as the original differential equations. The new difference schemes are tested as numerical methods. The obtained numerical solutions are shown to be much more accurate than those obtained by standard methods without an increase in cost. For an example involving a solution with a singularity in the integration region the symmetry preserving scheme, contrary to standard ones, provides solutions valid beyond the singular point.Comment: 26 pages 7 figure

    Optimal control of electromagnetic field using metallic nanoclusters

    Full text link
    The dielectric properties of metallic nanoclusters in the presence of an applied electromagnetic field are investigated using non-local linear response theory. In the quantum limit we find a non-trivial dependence of the induced field and charge distribution on the spatial separation between the clusters and on the frequency of the driving field. Using a genetic algorithm, these quantum functionalities are exploited to custom-design sub-wavelength lenses with a frequency controlled switching capability.Comment: accepted for publication in New Journal of Physic

    A discrete linearizability test based on multiscale analysis

    Get PDF
    In this paper we consider the classification of dispersive linearizable partial difference equations defined on a quad-graph by the multiple scale reduction around their harmonic solution. We show that the A1, A2 and A3 linearizability conditions restrain the number of the parameters which enter into the equation. A subclass of the equations which pass the A3 C-integrability conditions can be linearized by a Möbius transformation

    Moving constraints as stabilizing controls in classical mechanics

    Full text link
    The paper analyzes a Lagrangian system which is controlled by directly assigning some of the coordinates as functions of time, by means of frictionless constraints. In a natural system of coordinates, the equations of motions contain terms which are linear or quadratic w.r.t.time derivatives of the control functions. After reviewing the basic equations, we explain the significance of the quadratic terms, related to geodesics orthogonal to a given foliation. We then study the problem of stabilization of the system to a given point, by means of oscillating controls. This problem is first reduced to the weak stability for a related convex-valued differential inclusion, then studied by Lyapunov functions methods. In the last sections, we illustrate the results by means of various mechanical examples.Comment: 52 pages, 4 figure

    Multiscale expansion and integrability properties of the lattice potential KdV equation

    Get PDF
    We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schroedinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007 Conferenc

    On the Integrability of the Discrete Nonlinear Schroedinger Equation

    Full text link
    In this letter we present an analytic evidence of the non-integrability of the discrete nonlinear Schroedinger equation, a well-known discrete evolution equation which has been obtained in various contexts of physics and biology. We use a reductive perturbation technique to show an obstruction to its integrability.Comment: 4 pages, accepted in EP

    Measurement of the Blackbody Radiation Shift of the 133Cs Hyperfine Transition in an Atomic Fountain

    Full text link
    We used a Cs atomic fountain frequency standard to measure the Stark shift on the ground state hyperfine transiton frequency in cesium (9.2 GHz) due to the electric field generated by the blackbody radiation. The measures relative shift at 300 K is -1.43(11)e-14 and agrees with our theoretical evaluation -1.49(07)e-14. This value differs from the currently accepted one -1.69(04)e-14. The difference has a significant implication on the accuracy of frequency standards, in clocks comparison, and in a variety of high precision physics tests such as the time stability of fundamental constants.Comment: 4 pages, 2 figures, 2 table
    corecore