17,992 research outputs found

    Charging Interacting Rotating Black Holes in Heterotic String Theory

    Full text link
    We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of General Relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low--energy string theory the double Ernst system can be particularly interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb--Ramond fields. We clarify the rotating character of the BtϕB_{t\phi}--component of the antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low--energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4D effective field theory of the heterotic string. This transformation generates the U(1)nU(1)^n vector field content of the whole low--energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio

    The Charm of the Proton and the Λc+\Lambda _c^{+} Production

    Full text link
    We propose a two component model for charmed baryon production in pppp collisions consisting of the conventional parton fusion mechanism and fragmentation plus quarks recombination in which a udud valence diquark from the proton recombines with a cc-sea quark to produce a Λc+\Lambda_c^+. Our two-component model is compared with the intrinsic charm two-component model and experimental data.Comment: 6 pages, LaTex, 2 figures included, aipproc.sty included. Talk presented at Simposio Latino Americano de Fisica de Altas Energias, Merida, Mexico, November 199

    The Λ0\Lambda_0 Polarization and the Recombination Mechanism

    Full text link
    We use the recombination and the Thomas Precession Model to obtain a prediction for the Λ0\Lambda _0 polarization in the p+pΛ0+Xp+p \to \Lambda_0+X reaction. We study the effect of the recombination function on the Λ0\Lambda_0 polarization.Comment: 4 pages, LaTex, 1 figures included, aipproc.sty included. Talk presented at Simposio Latino Americano de Fisica de Altas Energias, Merida, Mexico, November 199

    Hexaaquazinc(II) dinitrate bis[5-(pyridinium-3-yl)tetrazol-1-ide]

    Get PDF
    Indexación: Scopus.Funding for this research was provided by: Fondecyt Regular (award No. 1151527); Proyecto REDES ETAPA INICIAL, Convocatoria 2017 (award No. REDI170423); Millennium Institute for Research in Optics (MIRO); Basal USA (award No. 1799).Hexaaquazinc(II) dinitrate 5-(pyridinium-3-yl)tetrazol-1-ide, [Zn(H2 O)6](NO 3)2 ·2C6H5 N 5, crystallizes in the space group P. The asymmetric unit contains one zwitterionic 5-(pyridinium-3-yl)tetrazol-1-ide molecule, one NO3-anion and one half of a [Zn(H2 O)6]2+ cation (symmetry). The pyridinium and tetrazolide rings in the zwitterion are nearly coplanar, with a dihedral angle of 5.4 (2)°. Several O-H..N and N-H..O hydrogen-bonding interactions exist between the [Zn(H2 O)6]2+ cation and the N atoms of the tetrazolide ring, and between the nitrate anions and the N-H groups of the pyridinium ring, respectively, giving rise to a three-dimensional network. The 5-(pyridinium-3-yl)tetrazol-1-ide molecules show parallel-displaced π-π stacking interactions; the centroid-centroid distance between adjacent tetrazolide rings is 3.6298 (6) Å and that between the pyridinium and tetrazolide rings is 3.6120 (5) Å. © 2018 Chi-Duran et al.http://journals.iucr.org/e/issues/2018/09/00/cq2025/index.htm

    Why does gravitational radiation produce vorticity?

    Get PDF
    We calculate the vorticity of world--lines of observers at rest in a Bondi--Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super--Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacum spacetimes.Comment: 9 pages; to appear in Classical and Quantum Gravit

    Key polynomials for simple extensions of valued fields

    Full text link
    Let ι:KLK(x)\iota:K\hookrightarrow L\cong K(x) be a simple transcendental extension of valued fields, where KK is equipped with a valuation ν\nu of rank 1. That is, we assume given a rank 1 valuation ν\nu of KK and its extension ν\nu' to LL. Let (Rν,Mν,kν)(R_\nu,M_\nu,k_\nu) denote the valuation ring of ν\nu. The purpose of this paper is to present a refined version of MacLane's theory of key polynomials, similar to those considered by M. Vaqui\'e, and reminiscent of related objects studied by Abhyankar and Moh (approximate roots) and T.C. Kuo. Namely, we associate to ι\iota a countable well ordered set Q={Qi}iΛK[x]; \mathbf{Q}=\{Q_i\}_{i\in\Lambda}\subset K[x]; the QiQ_i are called {\bf key polynomials}. Key polynomials QiQ_i which have no immediate predecessor are called {\bf limit key polynomials}. Let βi=ν(Qi)\beta_i=\nu'(Q_i). We give an explicit description of the limit key polynomials (which may be viewed as a generalization of the Artin--Schreier polynomials). We also give an upper bound on the order type of the set of key polynomials. Namely, we show that if char kν=0\operatorname{char}\ k_\nu=0 then the set of key polynomials has order type at most ω\omega, while in the case char kν=p>0\operatorname{char}\ k_\nu=p>0 this order type is bounded above by ω×ω\omega\times\omega, where ω\omega stands for the first infinite ordinal.Comment: arXiv admin note: substantial text overlap with arXiv:math/060519
    corecore