19,177 research outputs found
Variable-speed Generators with Flux Weakening
A cost-competitive, permanent-magnet 20 kW generator is designed such that the following criteria are satisfied: an (over) load capability of at least 30 kW over the entire speed range of 60-120 rpm, generator weight of about 550 lbs with a maximum radial stator flux density of 0.82 T at low speed, unity power factor operation, acceptably small synchronous reactances and operation without a gear box. To justify this final design four different generator designs are investigated: the first two designs are studied to obtain a speed range from 20 to 200 rpm employing rotor field weakening, and the latter two are investigated to obtain a maximum speed range of 40 to 160 rpm based on field weakening via the stator excitation. The generator reactances and induced voltages are computed using finite element/difference solutions. Generator losses and efficiencies are presented for all four designs at rated temperature of Tr=120C
Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation
We analyze the slow, glassy structural relaxation as measured through
collective and tagged-particle density correlation functions obtained from
Brownian dynamics simulations for a polydisperse system of quasi-hard spheres
in the framework of the mode-coupling theory of the glass transition (MCT).
Asymptotic analyses show good agreement for the collective dynamics when
polydispersity effects are taken into account in a multi-component calculation,
but qualitative disagreement at small when the system is treated as
effectively monodisperse. The origin of the different small- behaviour is
attributed to the interplay between interdiffusion processes and structural
relaxation. Numerical solutions of the MCT equations are obtained taking
properly binned partial static structure factors from the simulations as input.
Accounting for a shift in the critical density, the collective density
correlation functions are well described by the theory at all densities
investigated in the simulations, with quantitative agreement best around the
maxima of the static structure factor, and worst around its minima. A
parameter-free comparison of the tagged-particle dynamics however reveals large
quantiative errors for small wave numbers that are connected to the well-known
decoupling of self-diffusion from structural relaxation and to dynamical
heterogeneities. While deviations from MCT behaviour are clearly seen in the
tagged-particle quantities for densities close to and on the liquid side of the
MCT glass transition, no such deviations are seen in the collective dynamics.Comment: 23 pages, 26 figure
Tunable orbital susceptibility in - tight-binding models
We study the importance of interband effects on the orbital susceptibility of
three bands - tight-binding models. The particularity of
these models is that the coupling between the three energy bands (which is
encoded in the wavefunctions properties) can be tuned (by a parameter )
without any modification of the energy spectrum. Using the gauge-invariant
perturbative formalism that we have recently developped, we obtain a generic
formula of the orbital susceptibility of - tight-binding
models. Considering then three characteristic examples that exhibit either
Dirac, semi-Dirac or quadratic band touching, we show that by varying the
parameter and thus the wavefunctions interband couplings, it is
possible to drive a transition from a diamagnetic to a paramagnetic peak of the
orbital susceptibility at the band touching. In the presence of a gap
separating the dispersive bands, we show that the susceptibility inside the gap
exhibits a similar dia to paramagnetic transition.Comment: 15 pages,5 figs. Proceedings of the International Workshop on Dirac
Electrons in Solids 2015Proceedings of the International Workshop on Dirac
Electrons in Solids 201
Character Formulae and Partition Functions in Higher Dimensional Conformal Field Theory
A discussion of character formulae for positive energy unitary irreducible
representations of the the conformal group is given, employing Verma modules
and Weyl group reflections. Product formulae for various conformal group
representations are found. These include generalisations of those found by
Flato and Fronsdal for SO(3,2). In even dimensions the products for free
representations split into two types depending on whether the dimension is
divisible by four or not.Comment: 43 pages, uses harvmac,version 2 2 references added, minor typos
correcte
Deterministic Digital Clustering of Wireless Ad Hoc Networks
We consider deterministic distributed communication in wireless ad hoc
networks of identical weak devices under the SINR model without predefined
infrastructure. Most algorithmic results in this model rely on various
additional features or capabilities, e.g., randomization, access to geographic
coordinates, power control, carrier sensing with various precision of
measurements, and/or interference cancellation. We study a pure scenario, when
no such properties are available. As a general tool, we develop a deterministic
distributed clustering algorithm. Our solution relies on a new type of
combinatorial structures (selectors), which might be of independent interest.
Using the clustering, we develop a deterministic distributed local broadcast
algorithm accomplishing this task in rounds, where
is the density of the network. To the best of our knowledge, this is
the first solution in pure scenario which is only polylog away from the
universal lower bound , valid also for scenarios with
randomization and other features. Therefore, none of these features
substantially helps in performing the local broadcast task. Using clustering,
we also build a deterministic global broadcast algorithm that terminates within
rounds, where is the diameter of the
network. This result is complemented by a lower bound , where is the path-loss parameter of the
environment. This lower bound shows that randomization or knowledge of own
location substantially help (by a factor polynomial in ) in the global
broadcast. Therefore, unlike in the case of local broadcast, some additional
model features may help in global broadcast
- …