797 research outputs found

    Tau Polarization in Λb→Xcτνˉ \Lambda_b \to X_c \tau \bar{\nu} and B→XcτνˉB \to X_c \tau \bar{\nu}

    Full text link
    We discuss the longitudinal and transverse Ï„\tau-polarization in inclusive decays of hadrons containing bb-quarks. The calculation is performed by means of an OPE in HQET. Some mathematical difficulties in calculating transverse polarizations are explained. Numerical results are presented for longitudinal and for transverse polarizations, both in and perpendicular to the decay plane.Comment: LATEX, 20 pages, 5 Postscript figure

    A heavy quark effective field lagrangian keeping particle and antiparticle mixed sectors

    Get PDF
    We derive a tree-level heavy quark effective Lagrangian keeping particle-antiparticle mixed sectors allowing for heavy quark-antiquark pair annihilation and creation. However, when removing the unwanted degrees of freedom from the effective Lagrangian one has to be careful in using the classical equations of motion obeyed by the effective fields in order to get a convergent expansion on the reciprocal of the heavy quark mass. Then the application of the effective theory to such hard processes should be sensible for special kinematic regimes as for example heavy quark pair production near threshold.Comment: LaTeX, 14 pages, 1 EPS figure

    Stochastic dynamics and control of a driven nonlinear spin chain: the role of Arnold diffusion

    Full text link
    We study a chain of non-linear, interacting spins driven by a static and a time-dependent magnetic field. The aim is to identify the conditions for the locally and temporally controlled spin switching. Analytical and full numerical calculations show the possibility of stochastic control if the underlying semi-classical dynamics is chaotic. This is achievable by tuning the external field parameters according to the method described in this paper. We show analytically for a finite spin chain that Arnold diffusion is the underlying mechanism for the present stochastic control. Quantum mechanically we consider the regime where the classical dynamics is regular or chaotic. For the latter we utilize the random matrix theory. The efficiency and the stability of the non-equilibrium quantum spin-states are quantified by the time-dependence of the Bargmann angle related to the geometric phases of the states.Comment: Journal-ref: to appear in J.Phys.

    The Promising Process to Distinguish Supersymmetric Models with Large tanβ\beta from the Standard Model: B→Xsμ+μ−B\to X_s{\mu}^{+}{\mu}^{-}

    Full text link
    It is shown that in supersymmetric models (SUSYMs) the large supersymmetric contributions to B→Xsμ+μ−B \to X_s{\mu}^{+}{\mu}^{-} come from the Feynman diagrams which consist of exchanging neutral Higgs bosons (NHBs) and the chargino-stop loop and are proportional to mbmμm_b m_{\mu}tan3β/mh2^3\beta/m_{h}^2 when tanβ\beta is large and the mass of the lightest neutral Higgs boson mh_h is not too large (say, less than 150 Gev). Numerical results show that the branching ratios of B→Xsμ+μ−B \to X_s{\mu}^{+}{\mu}^{-} can be enhanced by more than 100% compared to the standard model (SM) and the backward-forward asymmetry of lepton is significantly different from that in SM when tanβ≥30\beta \geq 30.Comment: 8 pages, including 2 figure

    The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment

    Get PDF
    Retinal optical coherence tomography (OCT) is an imaging biomarker for neurodegeneration in multiple sclerosis (MS). In order to become validated as an outcome measure in multicenter studies, reliable quality control (QC) criteria with high inter-rater agreement are required

    The HQET/NRQCD Lagrangian to order alpha/m^3

    Full text link
    The HQET/NRQCD Lagrangian is computed to order alpha/m^3. The computation is performed using dimensional regularization to regulate the ultraviolet and infrared divergences. The results are consistent with reparametrization invariance to order 1/m^3. Some subtleties in the matching conditions for NRQCD are discussed.Comment: Two terms added to Lagrangian. Explicit value of G^3 coefficient given. Some references added, and TeX problems fixed. (18 pages, uses revtex

    Heavy Meson Decays into Light Resonances

    Full text link
    We analyse the Lorentz structures of weak decay matrix elements bewteen meson states of arbitrary spin. Simplifications arise in the transition amplitudes for a heavy meson decaying into a light one via a Bethe-Salpeter approach which incorporates heavy quark symmetry. Phenomenological consequences on several semileptonic, nonleptonic and FCNC induced decays of heavy flavoured mesons are derived and discussed.Comment: 20 RevTex pages, Preprint # UTAS-PHYS-94-0

    Application of heavy-quark effective theory to lattice QCD: I. Power Corrections

    Full text link
    Heavy-quark effective theory (HQET) is applied to lattice QCD with Wilson fermions at fixed lattice spacing a. This description is possible because heavy-quark symmetries are respected. It is desirable because the ultraviolet cutoff 1/a1/a in current numerical work and the heavy-quark mass mQm_Q are comparable. Effects of both short distances, a and 1/mQ1/m_Q, are captured fully into coefficient functions, which multiply the operators of the usual HQET. Standard tools of HQET are used to develop heavy-quark expansions of lattice observables and, thus, to propagate heavy-quark discretization errors. Three explicit examples are given: namely, the mass, decay constant, and semileptonic form factors of heavy-light mesons.Comment: 41 pp., no figs; Phys Rev D version, improving argument that an HQET holds for all m_Q
    • …
    corecore