262 research outputs found

    Ecofriendly bioherbicide approach for Striga control

    Get PDF

    Analysis of model predictive control through a power converter in a renewable energy system

    Get PDF
    Predictive control developments for applications in the field of renewable energy systems are still under investigation. In this article, the fundamentals of predictive control are studied with a focus on model predictive control (MPC). Based on this techniques, a control strategy for flexible power supply can be developed which could be implemented in renewable energy systems, such as solar photovoltaic (PV) systems

    Geophysical Investigations and Hydrochemical Characteristics of Groundwater in Part of the Eastern Nile Region, Khartoum State, Sudan

    Get PDF

    Biological control of aflatoxins in maize and groundnut through use of aflasafe products developed for Ghana

    Get PDF
    United States Agency for International Developmen

    Genetic diversity and population structure of Striga hermonthica populations from Kenya and Nigeria

    Get PDF
    Article purchasedStriga hermonthica is a parasitic weed that poses a serious threat to the production of economically important cereals in sub-Saharan Africa. The existence of genetic diversity within and between S. hermonthica populations presents a challenge to the successful development and deployment of effective control technologies against this parasitic weed. Understanding the extent of diversity between S. hermonthica populations will facilitate the design and deployment of effective control technologies against the parasite. In the present study, S. hermonthica plants collected from different locations and host crops in Kenya and Nigeria were genotyped using single nucleotide polymorphisms. Statistically significant genetic differentiation (FST = 0.15, P = 0.001) was uncovered between populations collected from the two countries. Also, the populations collected in Nigeria formed three distinct subgroups. Unique loci undergoing selection were observed between the Kenyan and Nigerian populations and among the three subgroups found in Nigeria. Striga hermonthica populations parasitising rice in Kenya appeared to be genetically distinct from those parasitising maize and sorghum. The presence of distinct populations in East and West Africa and in different regions in Nigeria highlights the importance of developing and testing Striga control technologies in multiple locations, including locations representing the geographic regions in Nigeria where genetically distinct subpopulations of the parasite were found. Efforts should also be made to develop relevant control technologies for areas infested with ‘rice-specific’ Striga spp. populations in Kenya

    Candidate malaria susceptibility/protective SNPs in hospital and population-based studies: the effect of sub-structuring

    Get PDF
    Background: Populations of East Africa including Sudan, exhibit some of the highest indices of genetic diversity in the continent and worldwide. The current study aims to address the possible impact of population structure and population stratification on the outcome of case-control association-analysis of malaria candidate-genes in different Sudanese populations, where the pronounced genetic heterogeneity becomes a source of concern for the potential effect on the studies outcome. Methods: A total of 72 SNPs were genotyped using the Sequenom iPLEX Gold assay in 449 DNA samples that included; cases and controls from two village populations, malaria patients and out-patients from the area of Sinnar and additional controls consisting of healthy Nilo-Saharan speaking individuals. The population substructure was estimated using the Structure 2.2 programme. Results & Discussion: The Hardy-Weinberg Equilibrium values were generally within expectation in Hausa and Massalit. However, in the Sinnar area there was a notable excess of homozygosity, which was attributed to the Whalund effect arising from population amalgamation within the sample. The programme STRUCTURE revealed a division of both Hausa and Massalit into two substructures with the partition in Hausa more pronounced than in Massalit; in Sinnar there was no defined substructure. More than 25 of the 72 SNPs assayed were informative in all areas. Some important SNPs were not differentially distributed between malaria cases and controls, including SNPs in CD36 and NOS2. A number of SNPs showed significant p-values for differences in distribution of genotypes between cases and controls including: rs1805015 (in IL4R1) (P=0001), rs17047661 (in CR1) (P=0.02) and rs1800750 (TNF-376) (P=0.01) in the hospital samples; rs1050828 (G6PD+202) (P=0.02) and rs1800896 (IL10-1082) (P=0.04) in Massalit and rs2243250 (IL4-589) (P=0.04) in Hausa. Conclusions: The difference in population structure partly accounts for some of these significant associations, and the strength of association proved to be sensitive to all levels of sub-structuring whether in the hospital or population-based study

    Mathematical Modeling of Hybrid Electrical Engineering Systems

    Get PDF
    A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the processes has been obtained in the paper. The equation contains both continuous and discrete components, which characterize an amplitude signal modulation. An equation for probability density of phase coordinate distribution in the system has been developed on the basis of a mathematical model for a hybrid system

    Trap efficiency of reservoirs on the Nile River

    Get PDF
    River morphodynamics and sediment transportSedimentation in reservoir
    corecore