1,376 research outputs found

    Diaphragm valve for corrosive and high temperature fluid flow control has unique features

    Get PDF
    Monometallic diaphragm valve is used for corrosive and high temperature fluid flow control. The body, diaphragm, and plug of the valve are welded together to form an integral leakproof unit for containing the fluid as it passes through the valve from inlet to outlet

    Three-axis electron-beam test facility

    Get PDF
    An electron beam test facility, which consists of a precision multidimensional manipulator built into an ultra-high-vacuum bell jar, was designed, fabricated, and operated at Lewis Research Center. The position within the bell jar of a Faraday cup which samples current in the electron beam under test, is controlled by the manipulator. Three orthogonal axes of motion are controlled by stepping motors driven by digital indexers, and the positions are displayed on electronic totalizers. In the transverse directions, the limits of travel are approximately + or - 2.5 cm from the center with a precision of 2.54 micron (0.0001 in.); in the axial direction, approximately 15.0 cm of travel are permitted with an accuracy of 12.7 micron (0.0005 in.). In addition, two manually operated motions are provided, the pitch and yaw of the Faraday cup with respect to the electron beam can be adjusted to within a few degrees. The current is sensed by pulse transformers and the data are processed by a dual channel box car averager with a digital output. The beam tester can be operated manually or it can be programmed for automated operation. In the automated mode, the beam tester is controlled by a microcomputer (installed at the test site) which communicates with a minicomputer at the central computing facility. The data are recorded and later processed by computer to obtain the desired graphical presentations

    Infrared study of valence transition compound YbInCu4 using cleaved surfaces

    Get PDF
    Optical reflectivity R(w) of YbInCu4 single crystals has been measured across its first-order valence transition at T_v ~ 42 K, using both polished and cleaved surfaces. R(w) measured on cleaved surfaces Rc(w) was found much lower than that on polished surface Rp(w) over the entire infrared region. Upon cooling through T_v, Rc(w) showed a rapid change over a temperature range of less than 2 K, and showed only minor changes with further cooling. In contrast, Rp(w) showed much more gradual and continuous changes across T_v, similarly to previously reported data on polished surfaces. The present result on cleaved surfaces demonstrates that the microscopic electronic structures of YbInCu4 observed with infrared spectroscopy indeed undergo a sudden change upon the valence transition. The gradual temperature-evolution of Rp(w) is most likely due to the compositional and/or Yb-In site disorders caused by polishing.Comment: 4 pages, 4 figures, Fig.1(a) correcte

    Field dependent effective masses in YbAl3_{3}

    Full text link
    We show for the intermediate valence compound YbAl3_{3} that the high field (40 B\lesssim B \lesssim 60T) effective masses measured by the de Haas-van Alphen experiment for field along the direction are smaller by approximately a factor of two than the low field masses. The field BB^{*} \sim 40T for this reduction is much smaller than the Kondo field BKkBTK/μBB_{K} \sim k_{B}T_{K}/\mu_{B} (TKT_{K}\sim 670K) but is comparable to the field kBTcoh/μBk_{B}T_{coh}/\mu_{B} where TcohT_{coh}\sim 40K is the temperature for the onset of Fermi liquid coherence. This suggests that the field scale BB^{*} does not arise from 4ff polarization but is connected with the removal of the anomalies that are known to occur in the Fermi liquid state of this compound.Comment: 7 pages plus 3 figures Submitted to PRL 9/12/0

    Measurements of complex permittivity of microwave substrates in the 20 to 300 K temperature range from 26.5 to 40.0 GHz

    Get PDF
    A knowledge of the dielectric properties of microwave substrates at low temperatures is useful in the design of superconducting microwave circuits. Results are reported for a study of the complex permittivity of sapphire (Al2O3), magnesium oxide (MgO), silicon oxide (SiO2), lanthanum aluminate (LaAlO3), and zirconium oxide (ZrO2), in the 20 to 300 Kelvin temperature range, at frequencies from 26.5 to 40.0 GHz. The values of the real and imaginary parts of the complex permittivity were obtained from the scattering parameters, which were measured using a HP-8510 automatic network analyzer. For these measurements, the samples were mounted on the cold head of a helium gas closed cycle refrigerator, in a specially designed vacuum chamber. An arrangement of wave guides, with mica windows, was used to connect the cooling system to the network analyzer. A decrease in the value of the real part of the complex permittivity of these substrates, with decreasing temperature, was observed. For MgO and Al2O3, the decrease from room temperature to 20 K was of 7 and 15 percent, respectively. For LaAlO3, it decreased by 14 percent, for ZrO2 by 15 percent, and for SiO2 by 2 percent, in the above mentioned temperature range

    Metallic partial melting processes on the acapulcoite-lodranite parent body.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月29日(木) 国立国語研究所 2階講

    Interim report on the analysis of the microwave power module

    Get PDF
    The results of a traveling wave tube multistage depressed collector (TWT-MDC) design study in support of the DARPA/DoD Microwave Power Module (MPM) Program are described. The study stressed the MDC as a key element in obtaining the required high overall efficiencies in the MPM application. The results showed that an efficient MDC, utilizing conventional design and fabrication techniques can be designed for the first generation MPM TWT, which permits a package one wavelength thick (.66 in. at 18 GHz). The overall TWT efficiency goal of 40 percent for electronic countermeasure (ECM) applications appears to be readily achievable. However, the 50 percent goal for radar applications presents a considerable challenge

    Pseudogap Formation and Heavy Carrier Dynamics in Intermediate Valence YbAl3

    Full text link
    Infrared optical conductivity [σ(ω)\sigma(\omega)] of the intermediate valence compound YbAl3_3 has been measured at temperatures 8 K T\leq T \leq 690 K to study its microscopic electronic structures. Despite the highly metallic characters of YbAl3_3, σ(ω)\sigma(\omega) exhibits a clear pseudogap (strong depletion of spectral weight) of about 60 meV below 40 K. It also shows a strong mid-infrared peak centered at \sim 0.25 eV. Energy-dependent effective mass and scattering rate of the carriers obtained from the data indicate the formation of a heavy-mass Fermi liquid state. These characteristic results are discussed in terms of the hybridization states between the Yb 4ff and the conduction electrons. It is argued, in particular, that the pseudogap and the mid-infrared peak result from the indirect and the direct gaps, respectively, within the hybridization state. band.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Occurrence Distribution of Polar Cap Patches: Dependences on UT, Season and Hemisphere

    Get PDF
    Polar cap patches are islands of enhanced electron density in the polar cap F region ionosphere, which sometimes affect the propagation of trans-ionospheric radio waves. Considering the intake of daytime sunlit plasma by the high-latitude convection as the primary cause of patches, the spatial overlap between the convection and the daytime sunlit plasma should be one of the critical factors controlling the generation of patches. To confirm this hypothesis, we statistically investigated the UT and seasonal distributions of patch occurrence frequency in both the hemispheres by using in situ plasma density data from the Swarm satellite. As a result, it was found that the occurrence distribution of patches is a complex function of UT, season and hemisphere, but it can be mostly interpreted by the spatial overlap between the high-latitude convection and the solar terminator. This suggests that polar cap patches are not necessarily phenomena that occur only during winter months. That is, patches can often be observed even in periods away from the winter solstice if the location of solar terminator in the magnetic coordinate system is appropriate for the generation of patches. For example, in the southern hemisphere, where the offset between the geographic and magnetic poles is larger than that in the northern hemisphere, the highest patch occurrence rate is obtained around the equinoctial periods. These results indicate that it is needed to take these dependences into account when we discuss and predict the space weather impacts of patches on the trans-ionospheric radio propagation

    Absence of Hybridization Gap in Heavy Electron Systems and Analysis of YbAl3 in terms of Nearly Free Electron Conduction Band

    Full text link
    In the analysis of the heavy electron systems, theoretical models with c-f hybridization gap are often used. We point out that such a gap does not exist and the simple picture with the hybridization gap is misleading in the metallic systems, and present a correct picture by explicitly constructing an effective band model of YbAl_3. Hamiltonian consists of a nearly free electron model for conduction bands which hybridize with localized f-electrons, and includes only a few parameters. Density of states, Sommerfeld coefficient, f-electron number and optical conductivity are calculated and compared with the band calculations and the experiments.Comment: 9 pages, 9 figures, submitted to J. Phys. Soc. Jp
    corecore