10,621 research outputs found

    Jet engine air intake system

    Get PDF
    An axisymmetric air intake system for a jet aircraft engine comprising a fixed cowl extending outwardly from the face of the engine, a centerbody coaxially disposed within the cowl, and an actuator for axially displacing the centerbody within the cowl was developed. The cowl and centerbody define a main airflow passageway therebetween, the configuration of which is changed by displacement of the centerbody. The centerbody includes a forwardly-located closeable air inlet which communicates with a centerbody auxiliary airflow passageway to provide auxiliary airflow to the engine. In one embodiment, a system for opening and closing the centerbody air inlet is provided by a dual-member centerbody, the forward member of which may be displaced axially with respect to the aft member

    Aircraft engine nozzle

    Get PDF
    A variable area exit nozzle arrangement for an aircraft engine was a substantially reduced length and weight which comprises a number of longitudinally movable radial vanes and a number of fixed radial vanes. The movable radial vanes are alternately disposed with respect to the fixed radial vanes. A means is provided for displacing the movable vanes along the longitudinal axis of the engine relative to the fixed radial vanes which extend across the main exhaust flow of the engine

    Electric arc device for heating gases Patent

    Get PDF
    Electric arc device for minimizing electrode ablation and heating gases to supersonic or hypersonic wind tunnel temperature

    Strong coupling of single emitters to surface plasmons

    Get PDF
    We propose a method that enables strong, coherent coupling between individual optical emitters and electromagnetic excitations in conducting nano-structures. The excitations are optical plasmons that can be localized to sub-wavelength dimensions. Under realistic conditions, the tight confinement causes optical emission to be almost entirely directed into the propagating plasmon modes via a mechanism analogous to cavity quantum electrodynamics. We first illustrate this result for the case of a nanowire, before considering the optimized geometry of a nanotip. We describe an application of this technique involving efficient single-photon generation on demand, in which the plasmons are efficiently out-coupled to a dielectric waveguide. Finally we analyze the effects of increased scattering due to surface roughness on these nano-structures.Comment: 34 pages, 7 figure

    Femtoscopy of the system shape fluctuations in heavy ion collisions

    Full text link
    Dipole, triangular, and higher harmonic flow that have an origin in the initial density fluctuations has gained a lot of attention as they can provide additional important information about the dynamical properties (e.g. viscosity) of the system. The fluctuations in the initial geometry should be also reflected in the detail shape and velocity field of the system at freeze-out. In this talk I discuss the possibility to measure such fluctuations by means of identical and non-identical particle interferometry.Comment: 4 pages, Proceedings of Quark Matter 2011 Conference, May 23 - May 28, Annecy, Franc

    Information transfer through a one-atom micromaser

    Full text link
    We consider a realistic model for the one-atom micromaser consisting of a cavity maintained in a steady state by the streaming of two-level Rydberg atoms passing one at a time through it. We show that it is possible to monitor the robust entanglement generated between two successive experimental atoms passing through the cavity by the control decoherence parameters. We calculate the entanglement of formation of the joint two-atom state as a function of the micromaser pump parameter. We find that this is in direct correspondence with the difference of the Shannon entropy of the cavity photons before and after the passage of the atoms for a reasonable range of dissipation parameters. It is thus possible to demonstrate information transfer between the cavity and the atoms through this set-up.Comment: Revtex, 5 pages, 2 encapsulated ps figures; added discussion on information transfer in relation with cavity photon statistics; typos corrected; Accepted for Publicaiton in Europhysics Letter

    Low temperature spin diffusion in the one-dimensional quantum O(3)O(3) nonlinear σ\sigma-model

    Full text link
    An effective, low temperature, classical model for spin transport in the one-dimensional, gapped, quantum O(3)O(3) non-linear σ\sigma-model is developed. Its correlators are obtained by a mapping to a model solved earlier by Jepsen. We obtain universal functions for the ballistic-to-diffusive crossover and the value of the spin diffusion constant, and these are claimed to be exact at low temperatures. Implications for experiments on one-dimensional insulators with a spin gap are noted.Comment: 4 pages including 3 eps-figures, Revte

    Recent advances in modelling and control of liquid chromatography

    Get PDF
    For more than a century, chromatography has been indispensable as a separation method for both analytics and purification. Among the variety of chromatographic techniques, liquid chromatography has a special status owing to its efficiency and versatility, and its status is further enhanced by the continuous improvements of analysers, materials, methods and understanding, all supported by computational approaches. High performance liquid chromatography (HPLC) has always held a special place in pharmaceutical processing, and computational HPLC has been explored since the very early stages of computing, although without having yet reached its full potential. Herein, we provide a comprehensive and critical review of recent developments in designing and operating liquid chromatographic systems, focussing on their modelling approaches and control strategies at large scale
    corecore