1,140 research outputs found

    Properties of cage rearrangements observed near the colloidal glass transition

    Full text link
    We use confocal microscopy to study the motions of particles in concentrated colloidal systems. Near the glass transition, diffusive motion is inhibited, as particles spend time trapped in transient ``cages'' formed by neighboring particles. We measure the cage sizes and lifetimes, which respectively shrink and grow as the glass transition approaches. Cage rearrangements are more prevalent in regions with lower local concentrations and higher disorder. Neighboring rearranging particles typically move in parallel directions, although a nontrivial fraction move in anti-parallel directions, usually from pairs of particles with initial separations corresponding to the local maxima and minima of the pair correlation function g(r)g(r), respectively.Comment: 5 pages, 4 figures; text & figures revised in v

    Equilibrium phase behavior of polydisperse hard spheres

    Full text link
    We calculate the phase behavior of hard spheres with size polydispersity, using accurate free energy expressions for the fluid and solid phases. Cloud and shadow curves, which determine the onset of phase coexistence, are found exactly by the moment free energy method, but we also compute the complete phase diagram, taking full account of fractionation effects. In contrast to earlier, simplified treatments we find no point of equal concentration between fluid and solid or re-entrant melting at higher densities. Rather, the fluid cloud curve continues to the largest polydispersity that we study (14%); from the equilibrium phase behavior a terminal polydispersity can thus only be defined for the solid, where we find it to be around 7%. At sufficiently large polydispersity, fractionation into several solid phases can occur, consistent with previous approximate calculations; we find in addition that coexistence of several solids with a fluid phase is also possible

    From random walk to single-file diffusion

    Full text link
    We report an experimental study of diffusion in a quasi-one-dimensional (q1D) colloid suspension which behaves like a Tonks gas. The mean squared displacement as a function of time is described well with an ansatz encompassing a time regime that is both shorter and longer than the mean time between collisions. This ansatz asserts that the inverse mean squared displacement is the sum of the inverse mean squared displacement for short time normal diffusion (random walk) and the inverse mean squared displacement for asymptotic single-file diffusion (SFD). The dependence of the single-file 1D mobility on the concentration of the colloids agrees quantitatively with that derived for a hard rod model, which confirms for the first time the validity of the hard rod SFD theory. We also show that a recent SFD theory by Kollmann leads to the hard rod SFD theory for a Tonks gas.Comment: 4 pages, 4 figure

    Static and dynamic heterogeneities in a model for irreversible gelation

    Full text link
    We study the structure and the dynamics in the formation of irreversible gels by means of molecular dynamics simulation of a model system where the gelation transition is due to the random percolation of permanent bonds between neighboring particles. We analyze the heterogeneities of the dynamics in terms of the fluctuations of the intermediate scattering functions: In the sol phase close to the percolation threshold, we find that this dynamical susceptibility increases with the time until it reaches a plateau. At the gelation threshold this plateau scales as a function of the wave vector kk as kη2k^{\eta -2}, with η\eta being related to the decay of the percolation pair connectedness function. At the lowest wave vector, approaching the gelation threshold it diverges with the same exponent γ\gamma as the mean cluster size. These findings suggest an alternative way of measuring critical exponents in a system undergoing chemical gelation.Comment: 4 pages, 4 figure

    Stacking Entropy of Hard Sphere Crystals

    Full text link
    Classical hard spheres crystallize at equilibrium at high enough density. Crystals made up of stackings of 2-dimensional hexagonal close-packed layers (e.g. fcc, hcp, etc.) differ in entropy by only about 103kB10^{-3}k_B per sphere (all configurations are degenerate in energy). To readily resolve and study these small entropy differences, we have implemented two different multicanonical Monte Carlo algorithms that allow direct equilibration between crystals with different stacking sequences. Recent work had demonstrated that the fcc stacking has higher entropy than the hcp stacking. We have studied other stackings to demonstrate that the fcc stacking does indeed have the highest entropy of ALL possible stackings. The entropic interactions we could detect involve three, four and (although with less statistical certainty) five consecutive layers of spheres. These interlayer entropic interactions fall off in strength with increasing distance, as expected; this fall-off appears to be much slower near the melting density than at the maximum (close-packing) density. At maximum density the entropy difference between fcc and hcp stackings is 0.00115+/0.00004kB0.00115 +/- 0.00004 k_B per sphere, which is roughly 30% higher than the same quantity measured near the melting transition.Comment: 15 page

    Direct visualization of aging in colloidal glasses

    Full text link
    We use confocal microscopy to directly visualize the dynamics of aging colloidal glasses. We prepare a colloidal suspension at high density, a simple model system which shares many properties with other glasses, and initiate experiments by stirring the sample. We follow the motion of several thousand colloidal particles after the stirring and observe that their motion significantly slows as the sample ages. The aging is both spatially and temporally heterogeneous. Furthermore, while the characteristic relaxation time scale grows with the age of the sample, nontrivial particle motions continue to occur on all time scales.Comment: submitted to proceedings for Liquid Matter Conference 200

    Glasses in hard spheres with short-range attraction

    Full text link
    We report a detailed experimental study of the structure and dynamics of glassy states in hard spheres with short-range attraction. The system is a suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear polymer which induces a depletion attraction between the particles. Observation of crystallization reveals a re-entrant glass transition. Static light scattering shows a continuous change in the static structure factors upon increasing attraction. Dynamic light scattering results, which cover 11 orders of magnitude in time, are consistent with the existence of two distinct kinds of glasses, those dominated by inter-particle repulsion and caging, and those dominated by attraction. Samples close to the `A3 point' predicted by mode coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure

    A Revolutionary Model to Improve Science Education, Teachers, and Scientists

    Get PDF
    To meet many modern global challenges, we need to promote scientific and technical literacy. The U.S. National Science Foundation (NSF) supports a “revolutionary” program to connect science education at all levels, from elementary through graduate school. The authors demonstrate how Maine has benefited from this program. They describe the University of Maine’s NSF-funded “GK-12 STEM” program, which placed graduate and advanced undergraduate science and technology students in elementary, middle, and high school classrooms; provided equipment for the schools; and offered training and professional development for the partner teachers. The authors urge the state, universities, and school districts to continue to use this model to increase science literacy and research capacity

    Self-diffusion coefficients of charged particles: Prediction of Nonlinear volume fraction dependence

    Full text link
    We report on calculations of the translational and rotational short-time self-diffusion coefficients DstD^t_s and DsrD^r_s for suspensions of charge-stabilized colloidal spheres. These diffusion coefficients are affected by electrostatic forces and many-body hydrodynamic interactions (HI). Our computations account for both two-body and three-body HI. For strongly charged particles, we predict interesting nonlinear scaling relations Dst1atϕ4/3D^t_s\propto 1-a_t\phi^{4/3} and Dsr1arϕ2D^r_s\propto 1-a_r\phi^2 depending on volume fraction ϕ\phi, with essentially charge-independent parameters ata_t and ara_r. These scaling relations are strikingly different from the corresponding results for hard spheres. Our numerical results can be explained using a model of effective hard spheres. Moreover, we perceptibly improve the known result for DstD^t_s of hard sphere suspensions.Comment: 8 pages, LaTeX, 3 Postscript figures included using eps
    corecore