100 research outputs found

    Towards the Heisenberg limit in microwave photon detection by a qubit array

    Full text link
    Using an analytically solvable model, we show that a qubit array-based detector allows to achieve the fundamental Heisenberg limit in detecting single photons. In case of superconducting qubits, this opens new opportunities for quantum sensing and communications in the important microwave range.Comment: 6 pages, 3 figure

    Ghost imaging using homodyne detection

    Get PDF
    We present a theoretical study of ghost imaging based on correlated beams arising from parametric down-conversion, and which uses balanced homodyne detection to measure both the signal and idler fields. We analytically show that the signal-idler correlations contain the full amplitude and phase information about an object located in the signal path, both in the near-field and the far-field case. To this end we discuss how to optimize the optical setups in the two imaging paths, including the crucial point regarding how to engineer the phase of the idler local oscillator as to observe the desired orthogonal quadrature components of the image. We point out an inherent link between the far-field bandwidth and the near-field resolution of the reproduced image, determined by the bandwidth of the source of the correlated beams. However, we show how to circumvent this limitation by using a spatial averaging technique which dramatically improves the imaging bandwidth of the far-field correlations as well as speeds up the convergence rate. The results are backed up by numerical simulations taking into account the finite size and duration of the pump pulse.Comment: 17 pages, 10 figures, submitted to Phys. Rev.

    Kinetic theory and dynamic structure factor of a condensate in the random phase approximation

    Full text link
    We present the microscopic kinetic theory of a homogeneous dilute Bose condensed gas in the generalized random phase approximation (GRPA), which satisfies the following requirements: 1) the mass, momentum and energy conservation laws; 2) the H-theorem; 3) the superfluidity property and 4) the recovery of the Bogoliubov theory at zero temperature \cite{condenson}. In this approach, the condensate influences the binary collisional process between the two normal atoms, in the sense that their interaction force results from the mediation of a Bogoliubov collective excitation traveling throughout the condensate. Furthermore, as long as the Bose gas is stable, no collision happens between condensed and normal atoms. In this paper, we show how the kinetic theory in the GRPA allows to calculate the dynamic structure factor at finite temperature and when the normal and superfluid are in a relative motion. The obtained spectrum for this factor provides a prediction which, compared to the experimental results, allows to validate the GRPA. PACS numbers:03.75.Hh, 03.75.Kk, 05.30.-dComment: 6 pages, 1 figures, QFS2004 conferenc

    The optimal cloning of quantum coherent states is non-Gaussian

    Full text link
    We consider the optimal cloning of quantum coherent states with single-clone and joint fidelity as figures of merit. Both optimal fidelities are attained for phase space translation covariant cloners. Remarkably, the joint fidelity is maximized by a Gaussian cloner, whereas the single-clone fidelity can be enhanced by non-Gaussian operations: a symmetric non-Gaussian 1-to-2 cloner can achieve a single-clone fidelity of approximately 0.6826, perceivably higher than the optimal fidelity of 2/3 in a Gaussian setting. This optimal cloner can be realized by means of an optical parametric amplifier supplemented with a particular source of non-Gaussian bimodal states. Finally, we show that the single-clone fidelity of the optimal 1-to-infinity cloner, corresponding to a measure-and-prepare scheme, cannot exceed 1/2. This value is achieved by a Gaussian scheme and cannot be surpassed even with supplemental bound entangled states.Comment: 4 pages, 2 figures, revtex; changed title, extended list of authors, included optical implementation of optimal clone

    Stochastic effects at ripple formation processes in anisotropic systems with multiplicative noise

    Full text link
    We study pattern formation processes in anisotropic system governed by the Kuramoto-Sivashinsky equation with multiplicative noise as a generalization of the Bradley-Harper model for ripple formation induced by ion bombardment. For both linear and nonlinear systems we study noise induced effects at ripple formation and discuss scaling behavior of the surface growth and roughness characteristics. It was found that the secondary parameters of the ion beam (beam profile and variations of an incidence angle) can crucially change the topology of patterns and the corresponding dynamics
    • …
    corecore