451 research outputs found

    Effect of information about organic production on beef liking and consumer willingness to pay

    Get PDF
    The present study was aimed to assess the effect of information about organic production on beef liking and consumer willingness to pay. Mean scores of perceived liking were higher for organic beef (OB) as compared to conventional beef (CB). Expected liking scores were higher for OB than for CB. For OB the expected liking was significantly higher than the perceived liking expressed in blind conditions (negative disconfirmation), whereas for CB no difference was observed. Consumers completely assimilated their liking for OB in the direction of expectations. Consumers showed a willingness to pay for OB higher than the suggested price (P < 0.001), the latter corresponding to the local commercial value for organic beef. We conclude that the information about organic farming can be a major determinant of beef liking, thus providing a potential tool for meat differentiation to traditional farms

    Using Ownership as an Incentive

    Full text link
    Agency theory is used to develop hypotheses regarding the effects of ownership proliferation on firm performance. The authors examine the effects of chief executive officer (CEO) ownership, executive team ownership, and all employee ownership in addition to the moderating effect of risk on firm survival and stock price. Firms with low CEO ownership outperform those with high levels of CEO ownership across all levels of risk, but the effect is most pronounced for low-risk firms. Executive team ownership is negatively related to firm performance, whereas ownership for all employees is positively associated with firm performance, particularly for higher risk firms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67316/2/10.1177_1059601199244003.pd

    Practical Guidance for Integrating Data Management into Long-Term Ecological Monitoring Projects

    Get PDF
    Long-term monitoring and research projects are essential to understand ecological change and the effectiveness of management activities. An inherent characteristic of long-term projects is the need for consistent data collection over time, requiring rigorous attention to data management and quality assurance. Recent papers have provided broad recommendations for data management; however, practitioners need more detailed guidance and examples. We present general yet detailed guidance for the development of comprehensive, concise, and effective data management for monitoring projects. The guidance is presented as a graded approach, matching the scale of data management to the needs of the organization and the complexity of the project. We address the following topics: roles and responsibilities; consistent and precise data collection; calibration of field crews and instrumentation; management of tabular, photographic, video, and sound data; data completeness and quality; development of metadata; archiving data; and evaluation of existing data from other sources. This guidance will help practitioners execute effective data management, thereby, improving the quality and usability of data for meeting project objectives as well as broader meta-analysis and macrosystem ecology research

    Many Body Theory of Charge Transfer in Hyperthermal Atomic Scattering

    Full text link
    We use the Newns-Anderson Hamiltonian to describe many-body electronic processes that occur when hyperthermal alkali atoms scatter off metallic surfaces. Following Brako and Newns, we expand the electronic many-body wavefunction in the number of particle-hole pairs (we keep terms up to and including a single particle-hole pair). We extend their earlier work by including level crossings, excited neutrals and negative ions. The full set of equations of motion are integrated numerically, without further approximations, to obtain the many-body amplitudes as a function of time. The velocity and work-function dependence of final state quantities such as the distribution of ion charges and excited atomic occupancies are compared with experiment. In particular, experiments that scatter alkali ions off clean Cu(001) surfaces in the energy range 5 to 1600 eV constrain the theory quantitatively. The neutralization probability of Na+^+ ions shows a minimum at intermediate velocity in agreement with the theory. This behavior contrasts with that of K+^+, which shows ... (7 figures, not included. Figure requests: [email protected])Comment: 43 pages, plain TeX, BUP-JBM-

    Establishment, Immortalisation and Characterisation of Pteropid Bat Cell Lines

    Get PDF
    BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto) were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study

    Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy

    Full text link
    Gaucher disease is caused by a deficiency of the lysosomal enzyme glucocerebrosidase (acid βâ glucosidase), with consequent cellular accumulation of glucosylceramide (GLâ 1). The disease is managed by intravenous administrations of recombinant glucocerebrosidase (imiglucerase), although symptomatic patients with mild to moderate type 1 Gaucher disease for whom enzyme replacement therapy (ERT) is not an option may also be treated by substrate reduction therapy (SRT) with miglustat. To determine whether the sequential use of both ERT and SRT may provide additional benefits, we compared the relative pharmacodynamic efficacies of separate and sequential therapies in a murine model of Gaucher disease (D409V/null). As expected, ERT with recombinant glucocerebrosidase was effective in reducing the burden of GLâ 1 storage in the liver, spleen, and lung of 3â monthâ old Gaucher mice. SRT using a novel inhibitor of glucosylceramide synthase (Genzâ 112638) was also effective, albeit to a lesser degree than ERT. Animals administered recombinant glucocerebrosidase and then Genzâ 112638 showed the lowest levels of GLâ 1 in all the visceral organs and a reduced number of Gaucher cells in the liver. This was likely because the additional deployment of SRT following enzyme therapy slowed the rate of reaccumulation of GLâ 1 in the affected organs. Hence, in patients whose disease has been stabilized by intravenously administered recombinant glucocerebrosidase, orally administered SRT with Genzâ 112638 could potentially be used as a convenient maintenance therapy. In patients naïve to treatment, ERT followed by SRT could potentially accelerate clearance of the offending substrate.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147062/1/jimd0281.pd

    Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells

    Get PDF
    Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length

    Substrate Reduction Augments the Efficacy of Enzyme Therapy in a Mouse Model of Fabry Disease

    Get PDF
    Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal hydrolase α-galactosidase A (α-gal). This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide (GL-3) in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular disease. The current treatment for Fabry disease is through infusions of recombinant α-gal (enzyme-replacement therapy; ERT). Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT) has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we show that such an inhibitor (eliglustat tartrate, Genz-112638) was effective at lowering GL-3 accumulation in a mouse model of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility of an improved therapeutic paradigm in the management of Fabry disease
    corecore