10,893 research outputs found

    Review of domestic violence policies in England & Wales

    Get PDF

    Survey and evaluation of techniques to augment convective heat transfer

    Get PDF
    This report presents a survey and evaluation of the numerous techniques which have been shown to augment convective heat transfer. These techniques are: surface promoters, including roughness and treatment; displaced promoters, such as flow disturbers located away from the heattransfer surface; vortex flows, including twisted-tape swirl generators; vibration of the heated surface or the fluid near the surface; electrostatic fields; and various types of fluid additives. Natural and forced convection situations for nonboiling, boiling, and condensation heat transfer are included. The conditions under which heat transfer is improved are summarized, and the efficiency of each technique is presented in terms of a performance criterion where possible.Sponsored by the Air Force Office of Scientific Research D.S.R

    Criminal law as a security project

    Get PDF
    This paper asks how criminal might be understood as a security project. Following Valverde’s lead, it does this not by trying to define the concept of security, but by looking at the operation of the temporal and spatial logics of the criminal law. It looks first at the basic logics of time and space in conceptions of criminal liability and jurisdiction, before reviewing some recent developments which challenge these practices and what these might mean for criminal law as a security project

    Design data for brazed Rene 41 honeycomb sandwich

    Get PDF
    Strength data, creep data and residual strength data after cyclic thermal exposure were obtained at temperatures from 78 K to 1144 K (-320 F to 1600 F). The influences of face thickness, core depth, core gage, cell size and thermal/stress exposure conditions on the mechanical design properties were investigated. A braze alloy and process was developed that is adequate to fully develop the strength of the honeycomb core while simultaneously solution treating and aging the Rene 41 fact sheets. New test procedures and test specimen configurations were developed to avoid excessive thermal stresses during cyclic thermal exposure

    Shear-driven size segregation of granular materials: modeling and experiment

    Full text link
    Granular materials segregate by size under shear, and the ability to quantitatively predict the time required to achieve complete segregation is a key test of our understanding of the segregation process. In this paper, we apply the Gray-Thornton model of segregation (developed for linear shear profiles) to a granular flow with an exponential profile, and evaluate its ability to describe the observed segregation dynamics. Our experiment is conducted in an annular Couette cell with a moving lower boundary. The granular material is initially prepared in an unstable configuration with a layer of small particles above a layer of large particles. Under shear, the sample mixes and then re-segregates so that the large particles are located in the top half of the system in the final state. During this segregation process, we measure the velocity profile and use the resulting exponential fit as input parameters to the model. To make a direct comparison between the continuum model and the observed segregation dynamics, we locally map the measured height of the experimental sample (which indicates the degree of segregation) to the local packing density. We observe that the model successfully captures the presence of a fast mixing process and relatively slower re-segregation process, but the model predicts a finite re-segregation time, while in the experiment re-segregation occurs only exponentially in time

    Radial Color Gradients in K+A Galaxies in Distant Clusters of Galaxies

    Get PDF
    Galaxies in rich clusters with z ≳\gtrsim 0.3 are observed to have a higher fraction of photometrically blue galaxies than their nearby counterparts. This raises the important question of what environmental effects can cause the termination of star formation between z ≈\approx 0.3 and the present. The star formation may be truncated due to ram-pressure stripping, or the gas in the disk may be depleted by an episode of star formation caused by some external perturbation. To help resolve this issue, surface photometry was carried out for a total of 70 early-type galaxies in the cluster Cl1358+62, at z ∼\sim 0.33, using two-color images from the Hubble Archive. The galaxies were divided into two categories based on spectroscopic criteria: 24 are type K+A (e.g., strong Balmer lines, with no visible emission lines), while the remaining 46 are in the control sample with normal spectra. Radial color profiles were produced to see if the K+A galaxies show bluer nuclei in relation to their surrounding disks. Specifically, a linear gradient was fit to the radial color profile of each galaxy. We find that the K+A galaxies on average tend to have slightly bluer gradients towards the center than the normals. A Kolmogorov-Smirnov two-sample test has been applied to the two sets of color gradients. The result of the test indicates that there is only a ∼\sim2% probability that the K+A and normal samples are drawn from the same parent distribution. There is a possible complication from a trend in the apparent magnitude vs. color gradient relation, but overall our results favor the centralized star formation scenario as an important process in the evolution of galaxies in dense clusters.Comment: 16 pages, 12 figures, accepted for publication in A

    Water quality impacts of the mountain pine beetle infestation in the Rocky Mountain west

    Get PDF
    November 2014.Includes bibliographical references.The Mountain Pine Beetle (MPB) is the primary cause of insect-induced mortality in pine forests in western North America where some lodgepole forests have experienced more than 90% tree mortality. The implications of MPB infestation on water resources are particularly important in the Rocky Mountains, which serve as the source-water region for more than 60 million people. Two important potential watershed impacts are changes in the hydrologic cycle and water quality. While impacts on the hydrologic cycle have received some attention, the interconnection between these changes and the impacts of the widespread infestation on water quality are not well understood. This study uses a combination of field sample analysis and modeling based in Rocky Mountain National Park to address two potential MPB-driven effects on water quality: increased metal concentrations with ecotoxicological and human health ramifications and the changes in source water contributions to streamflow with possible implications for metal and carbon transport to downstream drinking water supplies. Previous work from the research team at Colorado School of Mines identified increased potential for disinfection byproduct formation at water treatment plants receiving water from heavily MPB-killed forests. These increases exhibited surprising seasonal trends that suggest that the transport of carbon to streams, and thus the flowpaths of water, may be different in MPB-killed forests. The first question was investigated by sequentially extracting trace metals from soils under trees with vary levels of impact, and using geochemical models to identify important process-level drivers of changes in metal mobility. Laboratory results identify redistribution of metals in soils under beetle-killed trees with greater mobilization potential for cadmium, and increases in zinc and copper, likely related to fluxes from needle leachate. Results also align with geochemical models and identify changes in organic carbon inputs as the primary driver of increased metal mobility. The second questions was addressed using a chemical hydrograph separation approach to partition streamwater into the fractions derived from groundwater, rain, and snow. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are approximately 30 ± 15% greater after infestation and when compared with a neighboring watershed that experienced earlier and less-severe attack. Water budget analysis compared to published sap flux and remotely sensing studies reveals that this change is consistent with expected increases in groundwater from loss of transpiration across the watershed. A predictive statistical model (calibrated to observations within and around Rocky Mountain National Park) suggests that dissolved organic carbon concentrations in streams will be higher in areas where tree mortality is higher. Although, a strong statistical correlation was not found with the method used. Ultimately, this study identifies process-level hydrologic and biogeochemical changes that improve understanding of the vulnerability of Rocky Mountain water supplies to MPB outbreaks
    • …
    corecore