2,318 research outputs found
Clinical significance of epithelial-to-mesenchymal transition in laryngeal carcinoma: Its role in the different subsites
Background: During epithelial-to-mesenchymal transition, cancer cells lose adhesion capacity gaining migratory properties. The role of the process on prognosis has been evaluated in 50 cases of laryngeal carcinoma. Methods: E-cadherin, N-cadherin, β-catenin, α-catenin, γ-catenin, caveolin-1, and vimentin immunohistochemical expression were evaluated using a double score based on staining intensity and cellular localization. Results: Cytoplasmic E-cadherin and α/γ catenin staining were associated with a decrease in survival, cytoplasmic β-catenin was associated with advanced stage, and N-cadherin and vimentin expression were associated with poor differentiation and tumor relapse. On the basis of cancer cells, epithelial or mesenchymal morphological and immunophenotypic similarity we identified 4 main subgroups correlated with a transition to a more undifferentiated phenotype, which have a different pattern of relapse and survival. Conclusion: The negative prognostic role of epithelial-to-mesenchymal transition has been confirmed and a predictive role in glottic tumors has been suggested, leading us to propose epithelial-to-mesenchymal transition as an additional adverse feature in laryngeal carcinoma
Towards a Contactless Stress Classification Using Thermal Imaging
Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics through the regulation of the skin temperature. This study investigates the contribution given by thermal imaging for an effective automatic stress detection with the perspective of a contactless stress recognition system. To this aim, we recorded both ANS correlates (cardiac, electrodermal, and respiratory activity) and thermal images from 25 volunteers under acute stress induced by the Stroop test. We conducted a statistical analysis on the features extracted from each signal, and we implemented subject-independent classifications based on the support vector machine model with an embedded recursive feature elimination algorithm. Particularly, we trained three classifiers using different feature sets: the full set of features, only those derived from the peripheral autonomic correlates, and only those derived from the thermal images. Classification accuracy and feature selection results confirmed the relevant contribution provided by the thermal features in the acute stress detection task. Indeed, a combination of ANS correlates and thermal features achieved 97.37% of accuracy. Moreover, using only thermal features we could still successfully detect stress with an accuracy of 86.84% in a contact-free manne
Computational approaches to shed light on molecular mechanisms in biological processes
Computational approaches based on Molecular Dynamics simulations, Quantum Mechanical methods and 3D Quantitative Structure-Activity Relationships were employed by computational chemistry groups at the University of Milano-Bicocca to study biological processes at the molecular level. The paper reports the methodologies adopted and the results obtained on Aryl hydrocarbon Receptor and homologous PAS proteins mechanisms, the properties of prion protein peptides, the reaction pathway of hydrogenase and peroxidase enzymes and the defibrillogenic activity of tetracyclines. © Springer-Verlag 2007
Macroscopic effects of the spectral structure in turbulent flows
Two aspects of turbulent flows have been the subject of extensive, split
research efforts: macroscopic properties, such as the frictional drag
experienced by a flow past a wall, and the turbulent spectrum. The turbulent
spectrum may be said to represent the fabric of a turbulent state; in practice
it is a power law of exponent \alpha (the "spectral exponent") that gives the
revolving velocity of a turbulent fluctuation (or "eddy") of size s as a
function of s. The link, if any, between macroscopic properties and the
turbulent spectrum remains missing. Might it be found by contrasting the
frictional drag in flows with differing types of spectra? Here we perform
unprecedented measurements of the frictional drag in soap-film flows, where the
spectral exponent \alpha = 3 and compare the results with the frictional drag
in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of
the Reynolds number Re (a measure of the strength of the turbulence), we find
that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in
pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may
be predicted from the attendant value of \alpha by using a new theory, in which
the frictional drag is explicitly linked to the turbulent spectrum. Our work
indicates that in turbulence, as in continuous phase transitions, macroscopic
properties are governed by the spectral structure of the fluctuations.Comment: 6 pages, 3 figure
An 8 bit current steering DAC for offset compensation purposes in sensor arrays
Abstract. An 8 bit segmented current steering DAC is presented for the compensation of mismatch of sensors with current output arranged in a large arrays. The DAC is implemented in a 1.8 V supply voltage 180 nm standard CMOS technology. Post layout simulations reveal that the design target concerning a sampling frequency of 2.6 MHz is exceeded, worst-case settling time equals 60.6 ns. The output current range is 0–10 μA, which translates into an LSB of 40 nA. Good linearity is achieved, INL < 0.5 LSB and DNL < 0.4 LSB, respectively. Static power consumption with the outputs operated at a voltage of 0.9 V is approximately 10 μW. Dynamic power, mainly consumed by switching activity of the digital circuit parts, amounts to 100 μW at 2.6 MHz operation frequency. Total area is 38.6 × 2933.0 μm2
- …