41 research outputs found

    Field test of a continuous-variable quantum key distribution prototype

    Full text link
    We have designed and realized a prototype that implements a continuous-variable quantum key distribution protocol based on coherent states and reverse reconciliation. The system uses time and polarization multiplexing for optimal transmission and detection of the signal and phase reference, and employs sophisticated error-correction codes for reconciliation. The security of the system is guaranteed against general coherent eavesdropping attacks. The performance of the prototype was tested over preinstalled optical fibres as part of a quantum cryptography network combining different quantum key distribution technologies. The stable and automatic operation of the prototype over 57 hours yielded an average secret key distribution rate of 8 kbit/s over a 3 dB loss optical fibre, including the key extraction process and all quantum and classical communication. This system is therefore ideal for securing communications in metropolitan size networks with high speed requirements.Comment: 15 pages, 6 figures, submitted to New Journal of Physics (Special issue on Quantum Cryptography

    Feasibility of quantum key distribution through dense wavelength division multiplexing network

    Full text link
    In this paper, we study the feasibility of conducting quantum key distribution (QKD) together with classical communication through the same optical fiber by employing dense-wavelength-division-multiplexing (DWDM) technology at telecom wavelength. The impact of the classical channels to the quantum channel has been investigated for both QKD based on single photon detection and QKD based on homodyne detection. Our studies show that the latter can tolerate a much higher level of contamination from the classical channels than the former. This is because the local oscillator used in the homodyne detector acts as a "mode selector" which can suppress noise photons effectively. We have performed simulations based on both the decoy BB84 QKD protocol and the Gaussian modulated coherent state (GMCS) QKD protocol. While the former cannot tolerate even one classical channel (with a power of 0dBm), the latter can be multiplexed with 38 classical channels (0dBm power each channel) and still has a secure distance around 10km. Preliminary experiment has been conducted based on a 100MHz bandwidth homodyne detector.Comment: 18 pages, 5 figure

    Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    Get PDF
    BACKGROUND: The alpha-7 nicotinic acetylcholine receptor (alpha7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the alpha7-nAChR, or peptide modulation of receptor expression. METHODOLOGY/PRINCIPAL FINDINGS: This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the alpha7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of alpha7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. CONCLUSIONS/SIGNIFICANCE: The results reported here demonstrate a hitherto unknown relationship between the alpha7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration

    Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    Get PDF
    BACKGROUND: The alpha-7 nicotinic acetylcholine receptor (alpha7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the alpha7-nAChR, or peptide modulation of receptor expression. METHODOLOGY/PRINCIPAL FINDINGS: This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the alpha7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of alpha7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. CONCLUSIONS/SIGNIFICANCE: The results reported here demonstrate a hitherto unknown relationship between the alpha7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration

    The SECOQC quantum key distribution network in Vienna

    Get PDF
    In this paper, we present the quantum key distribution (QKD) network designed and implemented by the European project SEcure COmmunication based on Quantum Cryptography (SECOQC) (2004–2008), unifying the efforts of 41 research and industrial organizations. The paper summarizes the SECOQC approach to QKD networks with a focus on the trusted repeater paradigm. It discusses the architecture and functionality of the SECOQC trusted repeater prototype, which has been put into operation in Vienna in 2008 and publicly demonstrated in the framework of a SECOQC QKD conference held from October 8 to 10, 2008. The demonstration involved one-time pad encrypted telephone communication, a secure (AES encryption protected) video-conference with all deployed nodes and a number of rerouting experiments, highlighting basic mechanisms of the SECOQC network functionality.The paper gives an overview of the eight point-to-point network links in the prototype and their underlying technology: three plug and play systems by id Quantique, a one way weak pulse system from Toshiba Research in the UK, a coherent one-way system by GAP Optique with the participation of id Quantique and the AIT Austrian Institute of Technology (formerly ARCAustrian Research Centers GmbH—ARC is now operating under the new name AIT Austrian Institute of Technology GmbH following a restructuring initiative.), an entangled photons system by the University of Vienna and the AIT, a continuous-variables system by Centre National de la Recherche Scientifique (CNRS) and THALES Research and Technology with the participation of Université Libre de Bruxelles, and a free space link by the Ludwig Maximillians University in Munich connecting two nodes situated in adjacent buildings (line of sight 80 m). The average link length is between 20 and 30 km, the longest link being 83 km.The paper presents the architecture and functionality of the principal networking agent—the SECOQC node module, which enables the authentic classical communication required for key distillation, manages the generated key material, determines a communication path between any destinations in the network, and realizes end-to-end secure transport of key material between these destinations.The paper also illustrates the operation of the network in a number of typical exploitation regimes and gives an initial estimate of the network transmission capacity, defined as the maximum amount of key that can be exchanged, or alternatively the amount of information that can be transmitted with information theoretic security, between two arbitrary nodes
    corecore