13,649 research outputs found

    Shear and Vorticity in a Combined Einstein-Cartan-Brans-Dicke Inflationary Lambda-Universe

    Full text link
    A combined BCDE (Brans-Dicke and Einstein-Cartan) theory with lambda-term is developed through Raychaudhuri's equation, for inflationary scenario. It involves a variable cosmological constant, which decreases with time, jointly with energy density, cosmic pressure, shear, vorticity, and Hubble's parameter, while the scale factor, total spin and scalar field increase exponentially. The post-inflationary fluid resembles a perfect one, though total spin grows, but the angular speed does not (Berman, 2007d). Keywords: Cosmology; Einstein; Brans-Dicke; Cosmological term; Shear; Spin; Vorticity; Inflation; Einstein-Cartan; Torsion. PACS: 04.20.-q ; 98.80.-k ; 98.80.Bp ; 98.80.JkComment: 8 pages including front one. Published versio

    Ground resonance analysis using a substructure modeling approach

    Get PDF
    A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented

    Radiative Tail in πe2\pi_{e2} Decay and Some Comments on μe\mu-e Universality

    Full text link
    The result of lowest-order perturbation theory calculations of the photon and positron spectra in radiative pion(e2) decay are generalized to all orders of perturbation theory using the structure-function method. An additional source of radiative corrections to the ratio of the positron and muon channels of pion decay, due to emission of virtual and real photons and pairs, is considered. It depends on details of the detection of the final particles and is large enough to be taken into account in theoretical estimates with a level of accuracy of 0.1%.Comment: 5 pages, LaTeX, some misprints are corrected, submitted to Pisma Zh. Eksp. Teor. Fi

    Spectrum of light scattering from an extended atomic wave packet

    Full text link
    The spectrum of the light scattered from an extended atomic wave packet is calculated. For a wave packet consisting of two spatially separated peaks moving on parallel trajectories, the spectrum contains Ramsey-like fringes that are sensitive to the phase difference between the two components of the wave packet. Using this technique, one can establish the mutual coherence of the two components of the wave packet without recombining them.Comment: 4 page

    Microscopic Theory of Spontaneous Decay in a Dielectric

    Full text link
    The local field correction to the spontanous dacay rate of an impurity source atom imbedded in a disordered dielectric is calculated to second order in the dielectric density. The result is found to differ from predictions associated with both "virtual" and "real" cavity models of this decay process. However, if the contributions from two dielectric atoms at the same position are included, the virtual cavity result is reproduced.Comment: 12 Page

    Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    Get PDF
    We propose a solid-state nuclear spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field (10\sim 10T) and at low temperature 1\sim 1K.Comment: 3pages RevTex including 2 figure

    Electrical 2-omega-cm 0.046-cm-thick silicon solar cells as a function of intensity and temperature

    Get PDF
    Electrical characteristics of Mariner '71 type silicon solar cells are presented in graphical and tabular format as a function of intensity and temperature

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Simulations of Quantum Logic Operations in Quantum Computer with Large Number of Qubits

    Get PDF
    We report the first simulations of the dynamics of quantum logic operations with a large number of qubits (up to 1000). A nuclear spin chain in which selective excitations of spins is provided by the gradient of the external magnetic field is considered. The spins interact with their nearest neighbors. We simulate the quantum control-not (CN) gate implementation for remote qubits which provides the long-distance entanglement. Our approach can be applied to any implementation of quantum logic gates involving a large number of qubits.Comment: 13 pages, 15 figure
    corecore