667 research outputs found

    Catalytic Intermolecular Hetero-Dehydro-Diels–Alder Cycloadditions: Regio- and Diasteroselective Synthesis of 5,6-Dihydropyridin-2-ones

    Get PDF
    A novel catalyzed intermolecular heterodehydro-Diels–Alder reaction between push–pull 1,3-dien-5-ynes and aldimines or silylaldimines is reported. The sequence is promoted both by gold(I) or silver(I) catalysts and leads to the diastereo- and regioselective formation of 5,6-dihydropyridin-2-onesMICINN (Spain) (grants CTQ2009-09949, CTQ2010-16790, PTA2008-1524-P contract to J.M.F.-G. and Ramon y Cajal postdoctoral contract to M.A.F.-R.) and FICYT (project IB08-088)This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organic letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.htm

    Facile Preparation of Organic Nanoparticles by Interfacial Cross-Linking of Reverse Micelles and Template Synthesis of Subnanometer Au−Pt Nanoparticles

    Get PDF
    A single- and a double-tailed cationic surfactant with the triallylammonium headgroup formed reverse micelles (RMs) in heptane/chloroform containing a small amount of water. The reverse micelles were cross-linked at the interface upon UV irradiation in the presence of a water-soluble dithiol cross-linker and a photoinitiator. The resulting interfacially cross-linked reverse micelles (ICRMs) of the single-tailed surfactant aggregated in a solvent-dependent fashion, whereas those of the double-tailed were identical in size as the corresponding RMs. The ICRMs could extract anionic metal salts, such as AuCl4− and PtCl62−, from water into the organic phase. Au and Pt metal nanoparticles were produced upon reduction of metal salts. The covalent nature of the ICRMs made the template synthesis highly predictable, with the size of the metal particles controlled by the amount of the metal salt and the method of reduction. Nanoalloys were obtained by combining two metal precursors in the same reaction. Reduction of the ICRM-entrapped aurate also occurred without any external reducing agents, and the gold nanoparticles differed dramatically from those obtained through sodium borohydride reduction. The same template allowed the preparation of luminescent Au4, Au8, and Au13−Au23 clusters, as well as gold nanoparticles several nanometers in size, simply by using different amounts of gold precursor and reducing conditions

    Picomolar inhibition of cholera toxin by a pentavalent ganglioside GM1os-calix[5]arene

    Get PDF
    Cholera toxin (CT), the causative agent of cholera, displays a pentavalent binding domain that targets the oligosaccharide of ganglioside GM1 (GM1os) on the periphery of human abdominal epithelial cells. Here, we report the first GM1os-based CT inhibitor that matches the valency of the CT binding domain (CTB). This pentavalent inhibitor contains five GM1os moieties linked to a calix[5]arene scaffold. When evaluated by an inhibition assay, it achieved a picomolar inhibition potency (IC50 = 450 pM) for CTB. This represents a significant multivalency effect, with a relative inhibitory potency of 100000 compared to a monovalent GM1os derivative, making GM1os-calix[5]arene one of the most potent known CTB inhibitors
    • 

    corecore