62 research outputs found

    Congruence schemes

    Full text link
    A new category of algebro-geometric objects is defined. This construction is a vast generalization of existing F1-theories, as it contains the the theory of monoid schemes on the one hand and classical algebraic theory, e.g. Grothendieck schemes, on the the other. It also gives a handy description of Berkovich subdomains and thus contains Berkovich's approach to abstract skeletons. Further it complements the theory of monoid schemes in view of number theoretic applications as congruence schemes encode number theoretical information as opposed to combinatorial data which are seen by monoid schemes

    Minimal length in quantum space and integrations of the line element in Noncommutative Geometry

    Full text link
    We question the emergence of a minimal length in quantum spacetime, comparing two notions that appeared at various points in the literature: on the one side, the quantum length as the spectrum of an operator L in the Doplicher Fredenhagen Roberts (DFR) quantum spacetime, as well as in the canonical noncommutative spacetime; on the other side, Connes' spectral distance in noncommutative geometry. Although on the Euclidean space the two notions merge into the one of geodesic distance, they yield distinct results in the noncommutative framework. In particular on the Moyal plane, the quantum length is bounded above from zero while the spectral distance can take any real positive value, including infinity. We show how to solve this discrepancy by doubling the spectral triple. This leads us to introduce a modified quantum length d'_L, which coincides exactly with the spectral distance d_D on the set of states of optimal localization. On the set of eigenstates of the quantum harmonic oscillator - together with their translations - d'_L and d_D coincide asymptotically, both in the high energy and large translation limits. At small energy, we interpret the discrepancy between d'_L and d_D as two distinct ways of integrating the line element on a quantum space. This leads us to propose an equation for a geodesic on the Moyal plane.Comment: 29 pages, 2 figures. Minor corrections to match the published versio

    Ray-Singer Torsion for a Hyperbolic 3-Manifold and Asymptotics of Chern-Simons-Witten Invariant

    Get PDF
    The Ray-Singer torsion for a compact smooth hyperbolic 3-dimensional manifold H3{\cal H}^3 is expressed in terms of Selberg zeta-functions, making use of the associated Selberg trace formulae. Applications to the evaluation of the semiclassical asymptotics of the Witten's invariant for the Chern-Simons theory with gauge group SU(2) as well as to the sum over topologies in 3-dimensional quantum gravity are presented.Comment: Latex file, 15 pages. Some improvements, grammatical mistakes and typos correcte

    Analysis of Fourier transform valuation formulas and applications

    Full text link
    The aim of this article is to provide a systematic analysis of the conditions such that Fourier transform valuation formulas are valid in a general framework; i.e. when the option has an arbitrary payoff function and depends on the path of the asset price process. An interplay between the conditions on the payoff function and the process arises naturally. We also extend these results to the multi-dimensional case, and discuss the calculation of Greeks by Fourier transform methods. As an application, we price options on the minimum of two assets in L\'evy and stochastic volatility models.Comment: 26 pages, 3 figures, to appear in Appl. Math. Financ

    On the Quantum Complexity of the Continuous Hidden Subgroup Problem

    Get PDF
    The Hidden Subgroup Problem (HSP) aims at capturing all problems that are susceptible to be solvable in quantum polynomial time following the blueprints of Shor's celebrated algorithm. Successful solutions to this problems over various commutative groups allow to efficiently perform number-theoretic tasks such as factoring or finding discrete logarithms. The latest successful generalization (Eisentrager et al. STOC 2014) considers the problem of finding a full-rank lattice as the hidden subgroup of the continuous vector space Rm , even for large dimensions m . It unlocked new cryptanalytic algorithms (Biasse-Song SODA 2016, Cramer et al. EUROCRYPT 2016 and 2017), in particular to find mildly short vectors in ideal lattices. The cryptanalytic relevance of such a problem raises the question of a more refined and quantitative complexity analysis. In the light of the increasing physical difficulty of maintaining a large entanglement of qubits, the degree of concern may be different whether the above algorithm requires only linearly many qubits or a much larger polynomial amount of qubits. This is the question we start addressing with this work. We propose a detailed analysis of (a variation of) the aforementioned HSP algorithm, and conclude on its complexity as a function of all the relevant parameters. Incidentally, our work clarifies certain claims from the extended abstract of Eisentrager et al

    Decomposition of operator semigroups on W*-algebras

    Full text link
    We consider semigroups of operators on a W∗^*-algebra and prove, under appropriate assumptions, the existence of a Jacobs-DeLeeuw-Glicksberg type decomposition. This decomposition splits the algebra into a "stable" and "reversible" part with respect to the semigroup and yields, among others, a structural approach to the Perron-Frobenius spectral theory for completely positive operators on W∗^*-algebras.Comment: referee's comments incorporated. To appear in Semigroup Foru

    On the Quantum Complexity of the Continuous Hidden Subgroup Problem

    Get PDF
    The Hidden Subgroup Problem (HSP) aims at capturing all problems that are susceptible to be solvable in quantum polynomial time following the blueprints of Shor’s celebrated algorithm. Successful solutions to this problems over various commutative groups allow to efficiently perform number-theoretic tasks such as factoring or finding discrete logarithms. The latest successful generalization (Eisenträger et al. STOC 2014) considers the problem of finding a full-rank lattice as the hidden subgroup of the continuous vector space Rm, even for large dimensions m. It unlocked new cryptanalytic algorithms (Biasse-Song SODA 2016, Cramer et al. EUROCRYPT 2016 and 2017), in particular to find mildly short vectors in ideal lattices. The cryptanalytic relevance of such a problem raises the question of a more refined and quantitative complexity analysis. In the light of the increasing physical difficulty of maintaining a large entanglement of qubits, the degree of concern may be different whether the above algorithm requires only linearly many qubits or a much larger polynomial amount of qubits. This is the question we start addressing with this work. We propose a detailed analysis of (a variation of) the aforementioned HSP algorithm, and conclude on its complexity as a function of all the relevant parameters. Our modular analysis is tailored to support the optimization of future specialization to cases of cryptanalytic interests. We suggest a few ideas in this direction

    Higher Torsion Zeta Functions

    Get PDF

    Class Numbers of Orders in Cubic Fields

    No full text
    • …
    corecore