328 research outputs found

    The fading breadwinner role and the implications for young couples

    Get PDF
    It is a commonplace that the past few decades have been a time of increasing importance in the role of women as income providers, both within and outside of marriage. Drawing on data from the 1964 and 1993 March Current Population Surveys (CPS), we document the changing division of income provision within marriage and the association between changing marital income-provision roles and younger couples' economic welfare over the past thirty years. We find that the proportion of marriages in which husbands are primary breadwinners has declined dramatically, with a corresponding rise in "co-provider" marriages. Regression analyses show that (1) co- provider marriages are economically advantaged compared to other income-provision-role arrangements in both the early 1960s and the early 1990s; and (2) a relatively substantial part of the total improvement in younger couples' economic welfare over time stems from the shift towards co-provider marriages.

    Integrating Iterative Crossover Capability in Orthogonal Neighborhoods for Scheduling Resource-Constrained Projects

    Get PDF
    An effective hybrid evolutionary search method is presented which integrates a genetic algorithm with a local search. Whereas its genetic algorithm improves the solutions obtained by its local search, its local search component utilizes a synergy between two neighborhood schemes in diversifying the pool used by the genetic algorithm. Through the integration of these two searches, the crossover operators further enhance the solutions that are initially local optimal for both neighborhood schemes; and the employed local search provides fresh solutions for the pool whenever needed. The joint endeavor of its local search mechanism and its genetic algorithm component has made the method both robust and effective. The local search component examines unvisited regions of search space and consequently diversifies the search; and the genetic algorithm component recombines essential pieces of information existing in several high-quality solutions and intensifies the search. It is through striking such a balance between diversification and intensification that the method exploits the structure of search space and produces superb solutions. The method has been implemented as a procedure for the resource-constrained project scheduling problem. The computational experiments on 2,040 benchmark instances indicate that the procedure is very effective

    q-Breathers in Discrete Nonlinear Schroedinger arrays with weak disorder

    Get PDF
    Nonlinearity and disorder are key players in vibrational lattice dynamics, responsible for localization and delocalization phenomena. qq-Breathers -- periodic orbits in nonlinear lattices, exponentially localized in the reciprocal linear mode space -- is a fundamental class of nonlinear oscillatory modes, currently found in disorder-free systems. In this paper we generalize the concept of qq-breathers to the case of weak disorder, taking the Discrete Nonlinear Schr\"{o}dinger chain as an example. We show that qq-breathers retain exponential localization near the central mode, provided that disorder is sufficiently small. We analyze statistical properties of the instability threshold and uncover its sensitive dependence on a particular realization. Remarkably, the threshold can be intentionally increased or decreased by specifically arranged inhomogeneities. This effect allows us to formulate an approach to controlling the energy flow between the modes. The relevance to other model arrays and experiments with miniature mechanical lattices, light and matter waves propagation in optical potentials is discussed.Comment: 5 pages, 3 figure

    Speeding up the constraint-based method in difference logic

    Get PDF
    "The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-40970-2_18"Over the years the constraint-based method has been successfully applied to a wide range of problems in program analysis, from invariant generation to termination and non-termination proving. Quite often the semantics of the program under study as well as the properties to be generated belong to difference logic, i.e., the fragment of linear arithmetic where atoms are inequalities of the form u v = k. However, so far constraint-based techniques have not exploited this fact: in general, Farkas’ Lemma is used to produce the constraints over template unknowns, which leads to non-linear SMT problems. Based on classical results of graph theory, in this paper we propose new encodings for generating these constraints when program semantics and templates belong to difference logic. Thanks to this approach, instead of a heavyweight non-linear arithmetic solver, a much cheaper SMT solver for difference logic or linear integer arithmetic can be employed for solving the resulting constraints. We present encouraging experimental results that show the high impact of the proposed techniques on the performance of the VeryMax verification systemPeer ReviewedPostprint (author's final draft

    Improving the Efficiency of Reasoning Through Structure-Based Reformulation

    Get PDF
    Abstract. We investigate the possibility of improving the efficiency of reasoning through structure-based partitioning of logical theories, combined with partitionbased logical reasoning strategies. To this end, we provide algorithms for reasoning with partitions of axioms in first-order and propositional logic. We analyze the computational benefit of our algorithms and detect those parameters of a partitioning that influence the efficiency of computation. These parameters are the number of symbols shared by a pair of partitions, the size of each partition, and the topology of the partitioning. Finally, we provide a greedy algorithm that automatically reformulates a given theory into partitions, exploiting the parameters that influence the efficiency of computation.

    Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules

    Full text link
    Association rules are among the most widely employed data analysis methods in the field of Data Mining. An association rule is a form of partial implication between two sets of binary variables. In the most common approach, association rules are parameterized by a lower bound on their confidence, which is the empirical conditional probability of their consequent given the antecedent, and/or by some other parameter bounds such as "support" or deviation from independence. We study here notions of redundancy among association rules from a fundamental perspective. We see each transaction in a dataset as an interpretation (or model) in the propositional logic sense, and consider existing notions of redundancy, that is, of logical entailment, among association rules, of the form "any dataset in which this first rule holds must obey also that second rule, therefore the second is redundant". We discuss several existing alternative definitions of redundancy between association rules and provide new characterizations and relationships among them. We show that the main alternatives we discuss correspond actually to just two variants, which differ in the treatment of full-confidence implications. For each of these two notions of redundancy, we provide a sound and complete deduction calculus, and we show how to construct complete bases (that is, axiomatizations) of absolutely minimum size in terms of the number of rules. We explore finally an approach to redundancy with respect to several association rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape

    When Interval Analysis Helps Inter-Block Backtracking

    Get PDF
    International audienceInter-block backtracking (IBB) computes all the solutions of sparse systems of non-linear equations over the reals. This algorithm, introduced in 1998 by Bliek et al., handles a system of equations previously decomposed into a set of (small) k Ă— k sub-systems, called blocks. Partial solutions are computed in the different blocks and combined together to obtain the set of global solutions. When solutions inside blocks are computed with interval-based techniques, IBB can be viewed as a new interval-based algorithm for solving decomposed equation systems. Previous implementations used Ilog Solver and its IlcInterval library. The fact that this interval-based solver was more or less a black box implied several strong limitations. The new results described in this paper come from the integration of IBB with the interval-based library developed by the second author. This new library allows IBB to become reliable (no solution is lost) while still gaining several orders of magnitude w.r.t. solving the whole system. We compare several variants of IBB on a sample of benchmarks, which allows us to better understand the behavior of IBB. The main conclusion is that the use of an interval Newton operator inside blocks has the most positive impact on the robustness and performance of IBB. This modifies the influence of other features, such as intelligent backtracking and filtering strategies

    Tractable Combinations of Global Constraints

    Full text link
    We study the complexity of constraint satisfaction problems involving global constraints, i.e., special-purpose constraints provided by a solver and represented implicitly by a parametrised algorithm. Such constraints are widely used; indeed, they are one of the key reasons for the success of constraint programming in solving real-world problems. Previous work has focused on the development of efficient propagators for individual constraints. In this paper, we identify a new tractable class of constraint problems involving global constraints of unbounded arity. To do so, we combine structural restrictions with the observation that some important types of global constraint do not distinguish between large classes of equivalent solutions.Comment: To appear in proceedings of CP'13, LNCS 8124. arXiv admin note: text overlap with arXiv:1307.179

    A Photometrically and Morphologically Variable Infrared Nebula in L483

    Full text link
    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a time scale of only a few months. This nebula appears to be an infrared analogue to other well-known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a time scale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrow-band observations also found that H_2 knots are found nearly twice as far to the east of the source as to its west, and that H_2 emission extends farther east of the source than the previously known CO outflow.Comment: 19 pages, 6 figures, 1 tabl
    • …
    corecore