
The Rough Guide to Constraint Propagation

KrzysztofR. Apt1'2

I CW!
P.O. Box 94079, I 090 GB Amsterdam, the Netherlands

K.R.Apt@cwi.nl
2 University of Amsterdam, the Netherlands

Abstract. We provide here a simple, yet very general framework that allows
us to explain several constraint propagation algorithms in a systematic way. In
particular, using the notions commutativity and semi-commutativity, we show
how the well-known AC- 3, PC- 2, DAC and DPC algorithms are instances of a
single generic algorithm. The work reported here extends and simplifies that of
Apt[!].

1 Introduction

Constraint programming in a nutshell consists of formulating and solving so-called
constraint satisfaction problems. One of the most important techniques developed in this
area is constraint propagation that aims at reducing the search space while maintaining
equivalence.

We call the corresponding algorithms constraint propagation algorithms but sev
eral other names have also been used in the literature: consistency, local consistency,
consistency enforcing, Waltz, filtering or narrowing algorithms. These algorithms usu
ally aim at reaching some form of "local consistency", a notion that in a loose sense
approximates the notion of"global consistency".

Over the last twenty few years several constraint propagation algorithms were pro
posed and many of them are built into the existing constraint programming systems.
In Apt [1] we introduced a simple framework that allows us to explain many of these
algorithms in a uniform way. In this framework the notion of chaotic iterations, so fair
iterations of functions, on Cartesian products of specific partial orderings played a cru
cial role. In Monfroy and Rety [13] this framework was modified to study distributed
chaotic iterations. This resulted in a general framework for distributed constraint prop
agation algorithms.

We stated in Apt [l] that "the attempts of finding general principles behind the
constraint propagation algorithms repeatedly reoccur in the literature on constraint sat
isfaction problems spanning the last twenty years" and devoted three pages to survey
this work. Two references that are perhaps closest to our work are Benhamou [2] and
Telerman and Ushakov [16].

These developments led to an identification of a number of mathematical properties
that are of relevance for the considered functions, namely monotonicity, inflationarity
and idempotence (see, e.g., Saraswat, Rinard and Panangaden [15] and Benhamou and

2

Older [3]). Here we show that also the notions of commutativity and so-called semi
commutativity are important.

As in Apt [l], to explain the constraint propagation algorithms, we proceed here
in two steps. First, we introduce a generic iteration algorithm on partial orderings and
prove its correctness in an abstract setting. Then we instantiate this algorithm with spe
cific partial orderings and functions. The partial orderings will be related to the consid
ered variable domains and the assumed constraints, while the functions will be the ones
that characterize considered notions oflocal consistency in terms of fixpoints.

This presentation allows us to clarify which properties of the considered functions
are responsible for specific properties of the corresponding algorithms. The resulting
analysis is simpler than that of Apt [1] because we concentrate here on constraint prop
agation algorithms that always terminate. This allows us to dispense with the notion of
fairness. On the other hand, we can now prove stronger results by taking into account
the commutativity and semi-commutativity information.

This article is organized as follows. First, in Section 2, drawing on the approach of
Monfroy and Rety [13], we introduce a generic algorithm for the case when the partial
ordering is not further analyzed. Next, in Section 3, we refine it for the case when the
partial ordering is a Cartesian product of component partial orderings and in Section
4 explain how the introduced notions should be related to the constraint satisfaction
problems.

In the next four sections we instantiate the algorithm of Section 2 or some of its re
finements to obtain specific constraint propagation algorithms. In particular, in Section
5 we derive algorithms for arc consistency and hyper-arc consistency. These algorithms
can be improved by taking into account information on commutativity. This is done in
Section 6 and yields the well-known AC- 3 algorithm. Next, in Section 7 we derive an
algorithm for path consistency and in Section 8 we improve it, again by using informa
tion on commutativity. This yields the PC-2 algorithm.

In Section 9 we clarify under what assumptions the generic algorithm of Section
2 can be simplified to a simple for loop statement. Then we instantiate this simplified
algorithm to derive in Section 10 the DAC algorithm for directional arc consistency and
in Section 11 the DPC algorithm for directional path consistency. Finally, in Section 12
we briefly discuss possible future work.

So we deal here only with the classical algorithms that establish (directional) arc
consistency and (directional) path consistency and that are more than twenty, respec
tively ten, years old. However, several more "modem" constraint propagation algo
rithms can also be explained in this framework. In particular, in Apt [1, page 203] we
derived from a generic algorithm a simple algorithm that achieves the notion of rela
tional consistency of Dechter and van Beek [7]. In tum, we can use the framework of
Section 9 to derive the adaptive consistency algorithm ofDechter and Pearl [6]. Now,
Dechter [5] showed that this algorithm can be formulated in a very general framework
of bucket elimination that in tum can be used to explain such well-known algorithms
as directional resolution, Fourier-Motzkin elimination, Gaussian elimination, and also
various algorithms that deal with belief networks.

Due to lack of space we do not define here formally the considered local consistency
notions and refer the interested reader instead to the original papers or to Tsang [1 7].

3

2 Generic Iteration Algorithms

Our presentation is completely general. Consequently, we delay the discussion of con
straint satisfaction problems till Section 4. In what follows we shall rely on the follow
ing concepts.

Definition 1. Consider a partial ordering (D, ~) with the least element l.. and a.finite
set of functions F := {fi, .. ., fk} on D.

- By an iteration of F we mean an infinite sequence of values do, di , ... defined
inductively by

do:= ..l,

dj := fi; (dj-i),

where each ij is an element of[l..k].
- We say that an increasing sequence do ~ di ~ d2 •.• of elements from D eventually

stabilizes at d if for some j 2: 0 we have di = d for i 2 j. D

In what follows we shall consider iterations of functions that satisfy some specific
properties.

Definition 2. Consider a partial ordering (D, ~) and afanction f on D.

- f is called inflationary ifx ~ f(x)forall x.
- f is called monotonic if x ~ y implies f (x) ~ f (y) for all x, y. 0

The following simple observation clarifies the role of monotonicity. The subsequent
result will clarify the role of inflationarity.

Lemma 1 (Stabilization). Consider a partial ordering (D, ~) with the least element
l.. and a.finite set of monotonic functions Fon D.

Suppose that an iteration of F eventually stabilizes at a commonfixpoint d of the
functions from F. Then d is the least common fixed point of the functions from F.

Proof. Consider a common fixpoint e of the functions from F. We prove that d ~ e. Let
do, d1 , ... be the iteration in question. For some j 2 0 we have di = d for i 2 j.

It suffices to prove by induction on i that di ~e. The claim obviously holds for
i = 0 since d0 = l... Suppose it holds for some i 2 0. We have di+ 1 = fj (di) for some
j E [l..k].

By the monotonicity of fj and the induction hypothesis we get fj(di) ~ fJ(e), so
di+ 1 ~ e since e is a fix point of fj. D

We fix now a partial ordering (D, ~) with the least element l.. and a set of functions
F := {fi, .. ., fk} on D. We are interested in computing the least common fixpoint of
the functions from F. To this end we study the following algorithm that is inspired by
a similar algorithm ofMonfroy and Rety [13].

GENERIC ITERATION ALGORITHM (GI)

d := 1.;
G:== F;
whileG =/:- 0 do

od

choose g E G;
G:=G-{g};
G :=GU update(G, g, d);
d := g(d)

4

where for all G, g, d the set of functions update(G, g, d) from Fis such that

A. {! E F - G I f(d) = d /\ f(g(d)) =/:- g(d)} s; update(G, g, d),
B. g(d) = d implies that update(G, g, d) = 0.

Intuitively, assumption A states that update(G, g, d) at least contains all the func
tions from F - G for which dis a fixpoint but g(d) is not. The idea is that such func
tions are repeatedly added to the set G. In tum, assumption B states that no functions
are added to G in case the value of d did not change.

An obvious example of an update function that satisfies assumptions A and B is

update(G,g,d) := {f E F - G J f(d) = d /\ J(g(d)) =/:- g(d)}.

However, this choice of the update function is computationally expensive because for
each function fin F - G we would have to compute the values f(g(d)) and f(d). In
practice, we are interested in some approximations of the above update function. We
shall deal with this matter in the next section.

We now prove correctness of this algorithm in the following sense.

Theorem 1 (GI) .

(i) Every tenninating execution of the GI algorithm computes in d a commonfixpoint
of the functions from F.

(ii} Suppose that all functions in F are monotonic. Then every tenninating execution
of the GI algorithm computes in d the least common fixpoint of the functions from
F.

(iii) Suppose that all functions in F are inflationary and that (D, ~) is finite. Then
every execution of the GI algorithm terminates.

Proof.

(i) Consider the predicate I defined by:

I:= '<If E F - G j(d) =d.

Note that I is established by the assignment G := F. Moreover, it is easy to check that
I is preserved by each while loop iteration. Thus I is an invariant of the while loop of
the algorithm. Hence upon its termination

(G = 0) /\I

5

holds, that is
VJ E F f(d) =d.

(ii) This is a direct consequence of (i) and the Stabilization Lemma 1.

(iii) Consider the lexicographic ordering of the partial orderings (D, ;J) and (N, ::;),
defined on the elements of D x N by

(di, ni) ~lea: (d2, n2) iff di :::J d2 or (di = d2 and ni ~ n2)·

We use here the inverse ordering :::J defined by: di :::J d2 iff d2 !;;;; di and d2 -:f. di.
Given a finite set G we denote by cardG the number of its elements. By assumption

all functions in F are inflationary so, by virtue of assumption B, with each while loop
iteration of the modified algorithm the pair

(d, card G)

strictly decreases in this ordering ::;lea:· But by assumption (D, !;;;) is finite, so (D, :;;;!)
is well-founded and consequently so is (D x N, ~lea:)· This implies termination. D

In particular, we obtain the following conclusion.

Corollary 1 (GI) . Suppose that (D, !;;;) is a.finite partial ordering with the least
element ..L. Let F be a finite set of monotonic and inflationary .functions on D. Then
every execution of the GI algorithm terminates and computes in d the least common
fixpoint of the .functions from F. D

In practice, we are not only interested that the update function is easy to compute
but also that it generates small sets of functions. Therefore we show how the function
update can be made smaller when some additional information about the functions in
F is available. This will yield specialized versions of the GI algorithm. First we need
the following simple concepts.

Definition 3. Consider two .functions f, g on a set D.

- We say that f and g commute if f(g(x)) = g(f(x))for all x.
- We call f idempotent if f (f (x)) = f(x) for all x.

The following result holds.

Theorem 2 (Update).

(i) If update (G, g, d) satisfies assumptions A and B, then so does the function

update(G, g, d) - {g I g is idempotent}.

(ii) Suppose that for each g E F the set of functions Comm(g)from Fis such that
- g (j. Comm(g),
- each element ofComm(g) commutes with g.

D

6

If update(G, g, d) satisfies assumptions A and B, then so does the fanction

update(G,g,d) - Comm(g).

Proof. It suffices to establish in each case assumption A.

(i) Suppose that g is idempotent. Then any function f such that f (g(d)) f; g(d) differs
from g.

(ii) Consider a function f from F-G such thatf (d) = d and f (g(d)) f; g(d). Suppose
that f E Comm(g). Then f(g(d)) = g(f(d)) = g(d) which is a contradiction. So f rf.
Comm(g). Consequently, f E update(G, g, d) - Comm(g) by virtue of assumption
A for update(G, g, d). D

We conclude that given an instance of the GI algorithm that employs a specific
update function, we can obtain other instances of it by using update functions modified
as above. Note that both modifications are independent of each other and therefore can
be applied together. In particular, when each function is idempotent and the function
Comm satisfied the assumptions of (ii), then ifupdate(G, g, d) satisfies assumptions
A and B, then so does the function update(G, g, d) - (Comm(g) U {g}).

3 Compound Domains

In the applications we study the iterations are carried out on a partial ordering that is
a Cartesian product of the partial orderings. So assume now that the partial ordering
(D, !;:;;) is the Cartesian product of some partial orderings (D;, ~;),for i E (1..n],
each with the least element J_i· So D = Di x · · · x Dn.

Further, we assume that each function from F depends from and affects only certain
components of D. To be more precise we introduce a simple notation and terminology.

Definition 4. Consider a sequence of partial orderings (Di, !;:;; i), ... , (Dn, ~ n).

- By a scheme (on n) we mean a growing sequence of different elements from [l.. n].
- Given a schemes :=ii, ... , iz on n we denote by (D 8 , ~ 8) the Cartesian product

of the partial orderings (Di;, ~ i)for j E [1..l].
- Given a fanction f on D 8 we say that f is with scheme s and say that f depends

on i if i is an element of s.
- Given an n-tuple d := di, ... , dn from D and a scheme s := i 1 , ... , i 1 on n we

denote by d[s] the tuple dii, .. . , d; 1• In particular, for j E [l..n] d[j] is the j-th
element of d. O

Consider now a function f with schemes. We extend it to a function j+ from D to
D as follows. Take d E D. We set

j+(d) := e

where e[s] = f (d[s]) and e[n - s] = d[n - s], and where n - sis the scheme obtained
by removing from 1, ... , n the elements of s. We call j+ the canonic extension of j to
the domain D.

7

So 1+(d1, ... , dn) = (e1, ... , en) implies di = ei for any i not in the schemes off.
Informally, we can summarize it by saying that 1+ does not change the components on
which it does not depend. This is what we meant above by stating that each considered
function affects only certain components of D.

We now say that two functions, I with scheme s and g with scheme t commute if
the functions 1+ and g+ commute.

Instead of defining iterations for the case of the functions with schemes, we rather
reduce the situation to the one studied in the previous section and consider, equivalently,
the iterations of the canonic extensions of these functions to the common domain D.
However, because of this specific form of the considered functions, we can use now a
simple definition of the update function. More precisely, we have the following obser
vation.

Note 1 (Update). Suppose that each function in Fis of the form 1+. Then the following
function update satisfies assumptions A and B:

update(G, g+, d) :=
u+ E F - G I I depends on some i ins such that d[i] =/:- g+(d)[i]},

where g is with scheme s.

Proof. To deal with assumption A take a function 1+ E F - G such that 1+ (d) = d.
Then I (e) = e for any e that coincides with d on all components that are in the scheme
of I.

Suppose now additionally that j+(g+(d)) =/:- g+(d). By the above g+(d) differs
from d on some component i in the scheme of I. In other words, I depends on some i
such that d[i] =/:- g+ (d) [i]. This i is then in the scheme of g.

The proof for assumption B is immediate. D

This, together with the GI algorithm, yields the following algorithm in which we
introduced a variable d' to hold the value of g+(d), and used Fo := {f I 1+ E F} and
the functions with schemes instead of their canonic extensions to D.

GENERIC ITERATION ALGORITHM FOR COMPOUND DOMAINS (CD)

d := (..L1, · · ., ..Ln);
d' :=d;
G:=Fo;
while G =/:- 0 do

od

choose g E G; suppose g is with schemes;
G := G- {g};
d'[s] := g(d[s]);
G :=GU{! E F0 - G I I depends on some i ins such that d[i] =I- d'[i]};
d[s] := d'[s]

The following corollary to the GI Theorem 1 and the Update Note 1 summarizes
the correctness of this algorithm.

8

Corollary 2 (CD) • Suppose that (D, !;;;) is a/mite partial ordering that is a Carte
sian product ofn partial orderings, each with the least element ..Li with i E [l..n]. Let
F beafiniteset of.functions on D, each of the form j+.

Suppose that all functions in F are monotonic and inflationary. Then every execu
tion of the CD algorithm tenninates and computes in d the least commonjixpoint of the
functions from F. D

In the subsequent presentation we shall deal with the following two modifications
of the CD algorithm:

- CDI algorithm. This is the version of the CD algorithm. in which all the functions
are idempotent and the function update defined in the Update Theorem 2(i) is
used.

- CDC algorithm. This is the version of the CD algorithm in which all the functions are
idempotent and the combined effect of the functions update defined in the Update
Theorem 2 is used for some function Comm.

For both algorithms the counterparts of the CD Corollary 2 hold.

4 From Partial Orderings to Constraint Satisfaction Problems

We have been so far completely general in our discussion. Recall that our aim is to
derive various constraint propagation algorithms. To be able to apply the results of
the previous section we need to relate various abstract notions that we used there to
constraint satisfaction problems.

This is perhaps the right place to recall the definition and to fix the notation. Con
sider a finite sequence of variables X := x1, .. . , Xn, where n 2:: 0, with respective
domains V := D 1 , ... , Dn associated with them. So each variable Xi ranges over the
domain Di. By a constraint Con X we mean a subset of Di x ... x Dn.

By a constraint satisfaction problem, in short CSP, we mean a finite sequence of
variables X with respective domains V, together with a finite set C of constraints, each
on a subsequence of X. We write it as (C ; X1 E Di, ... , Xn E Dn), where X ::::::
X1, •.. , Xn and v :=Di, ... , Dn.

Consider now an element d := di, ... , dn of Di x ... x Dn and a subsequence
Y := Xi 1 , •• • , Xii of X. Then we denote by d[Y] the sequence di 1 , •• • , dit.

By a solution to (C ; X1 E Di, ... , Xn E Dn) we mean an element d E D 1 x
... x Dn such that for each constraint C E C on a sequence of variables Y we have
d[Y] E C. We call a CSP consistent if it has a solution. Two CSP's P1 and P2 with the
same sequence of variables are called equivalent if they have the same set of solutions.
This definition extends in an obvious way to the case of two CSP's with the same sets
of variables.

Let us return now to the framework of the previous section. It involved:

(i) Partial orderings with the least elements;
These will correspond to partial orderings on the CSP's. In each of them the original
CSP will be the least element and the partial ordering will be determined by the
local consistency notion we wish to achieve.

9

(ii) Monotonic and inflationary functions with schemes;
These will correspond to the functions that transform the variable domains or the
constraints. Each function will be associated with one or more constraints.

(iii) Common fixpoints;
These will correspond to the CSP's that satisfy the considered notion oflocal con
sistency.

In what follows we shall discuss two specific partial orderings on the CSP's. In each
of them the considered CSP's will be defined on the same sequences of variables.

We begin by fixing for each set D a collection :F(D) of the subsets of D that in
cludes D itself. So :Fis a function that given a set D yields a set of its subsets to which
D belongs.

When dealing with the hyper-arc consistency :F(D) will be simply the set P(D) of
all subsets of D but for specific domains only specific subsets of D will be chosen. For
example, to deal with the the constraint propagation for the linear constraints on integer
interval domains we need to choose for :F(D) the set ofall subintervals of the original
interval D.

When dealing with the path consistency, for a constraint C the collection :F(C)
will be also the set P(C) of all subsets of C. However, in general other choices may
be needed. For example, to deal with the cutting planes method, we need to limit our
attention to the sets of integer solutions to finite sets of linear inequalities with integer
coefficients (see Apt [I, pages 193-194]).

Next, given two CSP's, </> := (C ; x1 E D1, ... , Xn E Dn) and 'lf; := (C' ; x1 E
D~, .. . , Xn E D~). we write</> ~d 'lj; iff

- n: E :F(D;) (and hence n: ~ D;) for i E [l..n),
- the constraints in C' are the restrictions of the constraints in C to the domains

D~, ... ,D~.

So </> i;d 'lj; if 'lj; can be obtained from</> by a domain reduction rule and the domains
of'lj; belong to the appropriate collections of sets :F(D).

Next, given two CSP's, </> := (C1, ... ,Ck; De) and'lj; := (Cf, ... ,q,; Df), we
write </> ~c '!/; iff

- c: E :F(C;) (andhenceC~ ~ Ci) fori E [l..k].

In what follows we call i;d the domain reduction ordering and ~c the constraint
reduction ordering. To deal with the arc consistency, hyper-arc consistency and direc
tional arc consistency notions we shall use the domain reduction ordering, and to deal
with path consistency and directional path consistency notions we shall use the con
straint reduction ordering.

We consider each ordering with some fixed initial CSP P as the least element. In
other words, each domain reduction ordering is of the form

({P' I p ~d P'}, ~d)

and each constraint reduction ordering is of the form

({P' IP ~c P'}, l;c)·

10

Note that (C; X1 E D~, ... ,Xn E D~) i;;;;d (C'; X1 E D~, ... ,Xn E D~) iff
D~ 2 D~' fori E (1..n].

This means that for P = (C ; X1 E Di, ... , Xn E Dn) we can identify the domain
reduction ordering ({P' J P i;;;;d P'}, i;;;;d) with the Cartesian product of the partial or
derings (F(Di), 2), where i E [l..n]. Additionally, each CSP in this domain reduction
ordering is uniquely determined by its domains and by the initial P.

Similarly,

(C~, ... ,C~; VE) i;;;;c (C~', ... ,C~; VE) iffC~ 2 C:' fori E [l..k].

This allows us for P = (C1 , ... , Ck ; 'DE) to identify the constraint reduction ordering
({P' J P !;;;c P'}, ~c) with the Cartesian product of the partial orderings (F(Ci), 2
), where i E [l..k]. Also, each CSP in this constraint reduction ordering is uniquely
determined by its constraints and by the initial P.

In what follows instead of the domain reduction ordering and the constraint reduc
tion ordering we shall use the corresponding Cartesian products of the partial orderings.
So in these compound orderings the sequences of the domains (respectively, of the con
straints) are ordered componentwise by the reversed subset ordering 2. Further, in each
component ordering (F(D), 2) the set Dis the least element.

Considernow a function f on some Cartesian product :F (E 1) x ... x :F (Em). Note
that f is inflationary w.r. t. the componentwise ordering 2 if for all (X i , ... , X m) E
F(Ei) x ... x :F(Em) we have Yi ~ Xi for all i E [l..m], where f (X1, ... , Xm) =
(Yi, ... , Ym)·

Also, f is monotonic w.r.t. the componentwise ordering 2 if for all (X1, ... , Xm),
(Xf' ... , x:n) E F(E1) x ... x :F(Em) such that xi ~ XI for all i E [l..m], the
following holds: if

f(X1, .. . ,Xm) = (Y1, ... , Ym) and f(X{, .. . , x:n) = (Y{, .. . , Yr:,),

then Yi ~ Y/ for all i E [l..m].
In other words, f is monotonic w.r.t. 2· iff it is monotonic w.r.t. ~-This reversal of

the set inclusion of course does not hold for the infl.ationarity notion.

5 A Hyper-arc Consistency Algorithm

We begin by considering the notion of hyper-arc consistency of Mohr and Masini [12]
(we use here the terminology of Marriott and Stuckey [1 O]). The more known notion
of arc consistency ofMackworth [9] is obtained by restricting one's attention to binary
constraints.

To employ the CDI algorithm of Section 3 we now make specific choices involving
the items (i), (ii) and (iii) of the previous section.

Re: (i) Partial orderings with the least elements.
As already mentioned in the previous section, for the function :F we choose the

powerset function P, so for each domain D we put :F (D) : = P (D).
Given a CSP P with the sequence Di, ... , Dn of the domains we take the domain

reduction ordering with P as its least element. As already noted we can identify this

11

ordering with the Cartesian product of the partial orderings (P(Di), 2), where i E
[Ln). The elements of this compound ordering are thus sequences (X1, ... , Xn) of
respective subsets of the domains D 1 , ... , Dn ordered componentwise by the reversed
subset ordering 2.

Re: (ii) Monotonic and inflationary functions with schemes.
Given a constraintC on the variables Y1, ... , Yk with respective domains E1, ... , E1e,

we abbreviate for each j E [1 .. k) the set { d[j] I d E C} to IIJ (C). Thus IIj (C) con
sists of all j-th coordinates of the elements of C. Consequently, !Ii (C) is a subset of
the domain Ej of the variable Yi·

We now introduce for each i E [Lk] the following function 1fi on P(E1) x · · · x
P(E1e):

where
x; := IIi(C n (X1 x ... x X1e)).

That is, XI = {d[i) Id E X1 x · · · x Xk and d EC}. Each function Tri is associated
with a specific constraint C. Note that x; ~ Xi, so each function Tri boils down to a
projection on the i-th component.

Re: (iii) Common fixpoints.
Their use is clarified by the following lemma that also lists the relevant properties

of the functions 1fi.

Lemma 2 (Hyper-arc Consistency).
(i) A CSP (C ; X1 E D1, ... , Xn E Dn) is hyper-arc consistent ijf (D1, ... , Dn) is a

commonfixpoint of all functions 1ft associated with the constraints from C.
(ii) Each projection function 1fi associated with a constraint C is

- inflationary w.r.t. the componentwise ordering 2,
- monotonic w.r.t. the componentwise ordering 2.
- idempotent. D

By taking into account only the binary constraints we obtain an analogous charac
terization of arc consistency. The functions 7f1 and 7f2 can then be defined more directly
as follows:

7ri(X, Y) := (X', Y),

whereX' :={a EX I :J b E Y (a,b) EC}, and

7r2(X, Y) := (X, Y'),

where Y' := {b E Y I :Ja EX (a, b) E C}.
Fix now a CSP P. By instantiating the CDI algorithm with

Fo := {! I f is a 1fi function associated with a constrairlt of P}

and with each ..Li equal to Di we get the HYPER-ARC algorithm that enjoys following
properties.

12

Theorem3 (HYPER-ARC Algorithm). ConsideraCSPP := (C; X1 E D 1 , .• • ,xn E
Dn) where each Di is finite.

The HYPER-ARC algon"thm always terminates. Let P' be the CSP determined by
P and the sequence of the domains DJ., .. ., D~ computed in d. Then

(i) P' is the ';d-least CSP that is hyper-arc consistent,
(ii) P' is equivalent to P. D

Due to the definition of the ';d ordering the item (i) can be rephrased as follows.
Consider all hyper-arc consistent CSP's that are of the form (C' ; x1 E DJ., .. ., Xn E
D~) where D~ s;; Di for i E [1..n) and the constraints in C' are the restrictions of the
constraintsinC to the domains DJ., ... , D~. Then among these CSP's P' has the largest
domains.

6 An Improvement: the AC-3 Algorithm

In this section we show how we can exploit an information about the commutativity of
the 7ri functions. Recall that in Section 3 we modified the notion of commutativity for
the case of functions with schemes. We now need the following lemma.

Lemma 3 (Commutativity). Consider a CSP and two constraints of it, C on the vari
ables yi, .. ., Yk and Eon the variables zi, .. . , ze.

(i) For i,j E [1..k] the functions 1ri and 7rj of the constraint C commute.
(ii) If the variables Yi and Zj are identical then the .functions 7r i of C and 7r j of E

commute. D

Fix now a CSP. We derive a modification of the HYPER-ARC algorithm by in
stantiating this time the CDC algorithm. As before we use the set of functions F0 :=
{! I f is a 'lri function associated with a constraint of P} and each ..Li equal to Di. Ad
ditionally we employ the following function Comm, where 7ri is associated with a con
straint C:

Comm(7ri) := { 'lrj I i 'I j and 7rj is associated with the constraint C}
U { 7rj I 7rj is associated with a constraint E and

the i-th variable of C and the j-th variable of E coincide}.

By virtue of the Commutativity Lemm.a 3 each set Comm(g) satisfies the assump
tions of the Update Theorem 2(ii).

By limiting oneself to the set of functions 7t1 and 7t2 associated with the binary
constraints, we obtain an analogous modification of the corresponding arc consistency
algorithm.

Using now the counterpart of the CD Corollary 2 for the CDC algorithm we conclude
that the above algorithm enjoys the same properties as the HYPER-ARC algorithm, that
is the counterpart of the HYPER-ARC Algorithm Theorem 3 holds.

Let us clarify now the difference between this algorithm and the HYPER-ARC al
gorithm when both of them are limited to the binary constraints.

13

Assume that the considered CSP is of the form (C ; 1Jt:}. We reformulate the above
algorithm as follows. Given a binary relation R, we put

RT:= {(b,a) I (a,b) ER}.

For Fo we now choose the set of the '11"1 functions of the constraints or relations from
the set

So := { C I C is a binary constraint from C}
u { cT I c is a binary constraint from C}.

Finally, for each '11"1 function of some C E S0 on x, y we define

Comm(7ri} := {! I f is the 11"1 function of cT}
U {! I f is the 11"1 function of some E E So on x, z where z t:. y}.

Assume now that

for each pair of variables x, y at most one constraint exists on x, y. (1)

Consider now the corresponding instance of the CDC algorithm. By incorporating
into it the effect of the functions 71"1 on the corresponding domains, we obtain the fol
lowing algorithm known as the AC-3 algorithm ofMackworth [9].

We assume here that 7J£ := x1 E Di, ... , Xn E Dn.

AC-3 ALGORITHM

So := { C I C is a binary constraint from C}
u { cT I c is a binary constraint from C};

S :=So;
while S =f:. 0 do

od

choose C ES; suppose C is on Xi, Xj;

Di:= {a E Di I 3 b E Dj (a,b) EC};
if Di changed then

S :=Su {C' E So IC' isonthevariablesy,xi wherey "'/:. Xj}

fi"
' S := S- {C}

It is useful to mention that the corresponding reformulation of the HYPER-ARC
algorithm differs in the second assignment to S which is then

S := SU { C' E So I C' is on the variables y, z where y is Xi or z is Xi}·

So we "capitalized" here on the commutativity of the corresponding projection
functions 1!"1 as follows. First, no constraint or relation on Xi, z for some z is added
to S. Here we exploited part (ii) of the Commutativity Lemma 3.

Second, no constraint or relation on x j, x; is added to S. Here we exploited part (i)
of the Commutativity Lemma 3, because by assumption (1) GT is the only constraint
or relation on Xj, x; and its 7!'1 function coincides with the 7r2 function of C.

14

In case the assumption (l) about the considered CSP is dropped, the resulting algo

ritlun is somewhat less readable. However, once we use the following modified defini

tion of Comm(7r1):

Comm(7r1) := {f I f is the 1T1 function of some E E So on x, z where z t'- y}

we get an instance of the CDC algorithm which differs from the AC-3 algorithm in

that the qualification "where y "¥=. Xj" is removed from the definition of the second

assignment to the set S.

7 A Path Consistency Algorithm

The notion of path consistency was introduced in Montanari (14]. It is defined for spe

cial type of CSP's. For simplicity we ignore here unary constraints that are usually

present when studying path consistency.

Definition 5. We call a CSP normalized if it has only binary constraints and for each
pair x, y of its variables exactly one constraint on them exists. We denote this constraint

by Cx,y· o

Every CSP with only unary and binary constraints is trivially equivalent to a normal

ized CSP. Considernow a normalized CSP P. Suppose that P = (C1, ... , Ck ; V£).
We proceed now as in the case of hyper-arc consistency. First, we choose for the

function :F the powerset function. For the partial ordering we choose the constraint

reduction ordering of Section 4, or rather its counterpart which is the Cartesian product

of the partial orderings (P(C;), 2), where i E [l..k].
Second, we introduce appropriate monotonic and inflationary functions with schemes.

To this end, given two binary relations R and S we define their composition · by

R · S := { (a, b) I 3c ((a, c) E R, (c, b) E S)}.

Note that if Risa constraint on the variables x, y and Sa constraint on the variables

y, z, then R ·Sis a constraint on the variables x, z.
Given a subsequence x, y, z of the variables of P we now introduce three functions

on P(Cx,y) x P(Cx,z) x P(Cy,z):

J;,y(P,Q,R) := (P',Q,R),

where P 1 := p n Q . RT'

!f,z(P,Q,R) := (P,Q',R),

where Q' := Q n P · R, and

J;,zCP,Q,R) := (P,Q,R'),

whereR' :=Rn PT ·Q.
Finally, we introduce common fixpoints of the above defined functions. To this end

we need the following counterpart of the Hyper-arc Consistency Lemma 2.

15

Lemma 4 (Path Consistency).

(i) A normalized CSP (C1 , ... , Ck ; V£) is path consistent i.ff(C1 , ... , Ck) is a com
mon jixpoint of all fu.nctions (j; ,y) +' (f ¥,z) + and u:) + associated with the sub
sequences x, y, z of its variables.

(ii) Thefu.nctions 1;,y, 1¥,z and 1;,z are
- inflationary w.r.t. the componentwise ordering :;;?,
- monotonic w.r.t. the componentwise ordering:;;?,
- idempotent. D

We now instantiate the CDI algorithm with the set of functions

Fo := {f Ix, y, z is a subsequence of the variables ofP and 1 E u:,y, l:,z• 1:,zn,

n := k and each l.i equal to Ci.
Call the resulting algorithm the PATH algorithm. It enjoys the following properties.

Theorem 4 (PATH Algorithm). Consider a normalizedCSPP := (C1, ... , Ck; V£).
Assume that each constraint Ci is finite.

The PATH algorithm always terminates. Let P' := (Of, ... , C~ ; V£), where the
sequence of the constraints Of, ... , C~ is computed in d. Then

(i) P' is the r;c-least CSP that is path consistent,
(ii) P' is equivalent to P. D

As in the case of the HYPER-ARC Algorithm Theorem 3 the item (i) can be rephrased
as follows. Consider all path consistent CSP's that are of the form (C~, ... , Ck ; V£)
where c: ~ Ci for i E [1..k). Then among them P' has the largest constraints.

8 An Improvement: the PC-2 Algorithm

As in the case of the hyper-arc consistency we can improve the PATH algorithm by
taking into account the commutativity information.

Fix a normalized CSP P. We abbreviate the statement "x, y is a subsequence of the
variables of P" to x -< y. We now have the following lemma.

Lemma 5 (Commutativity). Suppose that x -< y and let z, u be some variables of P
such that { u, z} n {x, y} = 0. Then thefu.nctions J;,y and f':,y commute. D

In other words, two functions with the same pair of variables as a subscript commute.

We now instantiate the CDC algorithm with the same set of functions Fo as in Sec
tion 7. Additionally, we use the function Comm defined as follows, where x -< y and
where z </. {x, y }:

Comm(f;,y) = u~.y I u </. {x,y,z}}.

Thus for each function g the set Comm(g) contains precisely m - 3 elements,
where m is the number of variables of the considered CSP. This quantifies the maximal

16

"gain" obtained by using the commutativity information: at each "update" stage of the
corresponding instance of the CDC algorithm we add up tom - 3 less elements than in
the case of the corresponding instance of the CDI algorithm considered in the previous
section.

By virtue of the Commutativity Lemma 5 each set Comm(g) satisfies the assump
tions of the Update Theorem 2(ii). We conclude that the above instance of the CDC
algorithm enjoys the same properties as the original PATH algorithm, that is the coun
terpart of the PATH Algorithm Theorem 4 holds. To make this modification of the PATH
algorithm easier to understand we proceed as follows.

Each function of the form r:,y where x -< y and u r/. { x' y} can be identified with
the sequence x, u, y of the variables. (Note that the "relative" position of u w.r.t. x and
y is not fixed, so x, u, y does not have to be a subsequence of the variables of P.) This
allows us to identify the set of functions Fo with the set

Vo:= {(x,u,y) Ix-< y,u r/. {x,y}}.

Next, assuming that x -< y, we introduce the following set of triples of different
variables of P:

Vx,y := {(x,y,u) Ix-< u} U {(y,x,u) I y-< u}
U {(u,x,y) I u-< y} U {(u,y,x) I u-< x}.

Informally, Vx,y is the subset of Vo that consists of the triples that begin or end
with either x, y or y, x. This corresponds to the set of functions in one of the following
forms: !I,w f~,u' f~,y and fE,x·

The above instance of the CDC algorithm then becomes the following PC- 2 algo
rithm ofMackworth [9]. Here initially Ex,y = Cx,y·

PC-2 ALGORITHM

Vo:= {(x,u,y) Ix-< y,u (/_ {x,y}};
v :=Vo;
while V :f. 0 do

od

choose p E V; suppose p = (x, u, y);
apply J::,y to its current domains;
if Ex ,y changed then

V := VUVx,y;
fi.
' V := V- {p}

Here the phrase "apply J;:,y to its current domains" can be made more precise if the
"relative" position of u w.r.t. x and y is known. Suppose for instance that u is "before"
x and y. Then r::,y is defined on P(Cu,x) x P(Cu,y) x P(Cx,y) by

17

so the above phrase "apply r:,y to its current domains" can be replaced by the assign
ment

Ex,y := Ex,y n EJ,,, · Eu,y·

Analogously for the other two possibilities.
The difference between the PC-2 algorithm and the corresponding representation

of the PATH algorithm lies in the way the modification of the set V is carried out. In
the case of the PATH algorithm the second assignment to Vis

V :=VU Vx,y U {(x, u, y) I u r/. {x, y}}.

9 Simple Iteration Algorithms

Let us return now to the framework of Section 2. We analyze here when the while loop
of the GENERIC ITERATION ALGORITHM GI can be replaced by a for loop. First, we
weaken the notion of commutativity as follows.

Definition 6. Consider a partial ordering (D, ~) and functions j and g on D. We say
that f semi-commutes with g (w.r.t. ~)if f(g(x)) ~ g(f(x))fora/I x. D

The following lemma provides an answer to the question just posed. Here and else
where we omit brackets when writing repeated applications of functions to an argument.

Lemma 6 (Simple Iteration). Consider a partial ordering (D, ~) with the least ele
ment l.. Let F := Ji, ... , fk be a finite sequence of monotonic, inflationary and idem
potent functions on D. Suppose that fi semi-commutes with fj for i > j, that is,

f;(fj(x)) !.;;; fj(fi(x))forall x. (2)

Then Ji h . . .f k (l.) is the least common fixpoint of the fanctions from F. D

Proof. We prove first that for i E [1..k] we have

Indeed, by the assumption (2) we have the following string of inclusions, where the last
one is due to the idempotence of the considered functions:

Additionally, by the infiationarity of the considered functions, we also have for i E
[l..k]

fif2 .. ·fk(l.) !.;;; fd1h- .. fk(l.).

So fif2 .. . fk(l.) is a common fixpoint of the functions from F. This means that
the iteration of F that starts with 1., fk(l.), fk-ifk(l.), ... ,fih. -fk(l.) eventually
stabilizes at f 1 h . .. f k (l.). By the Stabilization Lemma 1 we get the desired conclusion.

0

18

The above lemma provides us with a simple way of computing the least common
fixpoint of a set of finite functions that satisfy the assumptions of this lemma, in par
ticular condition (2). Namely, it suffices to order these functions in an appropriate way
and then to apply each of them just once, starting with the argument ..L.

To this end we maintain the considered functions not in a set but in a list. Given a
non-empty list L we denote its head by head(L) and its tail by tail(L). Next, given a
sequence of elements a1, •.. , an with n ~ 0, we denote by [ai, ... , an] the list formed
by them. If n = 0, then this list is empty and is denoted by [] and if n > 0, then
head([a1, .. . ,an])= a1 and tail([ai, .. . ,an])= [a2, .. . an]·

The following algorithm is a counterpart of the GI algorithm. We assume in it that
condition (2) holds for the functions ii , ... , f k.

SIMPLE ITERATION ALGORITHM (SI)

d := ..L;
L := [fk, fk-1, · · ., fi];
for i := 1 to k do

od

g := head(L);
L := tail(L);
d := g(d)

The following immediate consequence of the Simple Iteration Lemma 6 is a coun
terpart of the GI Corollary l.

Corollary 3 (SI) . Suppose that (D, !;;;;) is a partial ordering with the least element
. .L Let F := Ji, ... , fk be a finite sequence of monotonic, inflationary and idempotent
.functions on D such that (2) holds. Then the SI algorithm terminates and computes in
d theleastcommonfixpointofthefunctionsfrom F. D

Note that in contrast to the GI Corollary 1 we do not require here that the partial or
dering is finite. Because at each iteration of the for loop exactly one element is removed
from the list L, at the end of this loop the list Lis empty. Consequently, this algorithm
is a reformulation of the one in which the line

for i := 1 to k do

is replaced by
while L =f:. [] do.

So we can view the SI algorithm as a specialization of the GI algorithm of Section
2 in which the elements of the set of functions G (here represented by the list L) are
selected in a specific way and in which the update function always yields the empty
set.

In Section 3 we refined the GI algorithm for the case of compound domains. An
analogous refinement of the SI algorithm is straightforward and omitted. In the next
two sections we show how we can use this refinement of the s I algorithm to derive two
well-known constraint propagation algorithms.

19

10 DAC: a Directional Arc Consistency Algorithm

We consider here the notion of directional arc consistency of Dechter and Pearl [6]. To
derive an algorithm that achieves this local consistency notion we first characterize it
in terms of fixpoints. To this end, given a P and a linear ordering ~ on its variables,
we rather reason in terms of the equivalent CSP P-< obtained from P by reordering its
variables along -< so that each constraint in P-< is on a sequence of variables x1, .. ., Xk

such that x1 ~ x2 -< ... -< Xk.

The following characterization holds.

Lemma 7 (Directional Arc Consistency). Consider a CSP P with a linear ordering
~on its variables. Let P-< := (C ; X1 E Di, ... , Xn E Dn). Then P is directionally arc
consistent w.r.t. -< iff(D1, .. . , Dn) is a commonfixpoint of the functions 7rt associated
with the binary constraints from P -<· D

We now instantiate in an appropriate way the SI algorithm for compound domains
with all the 7r1 functions associated with the binary constraints from P-<. In this way
we obtain an algorithm that achieves for P directional arc consistency w.r.t. ~- First,
we adjust the definition of semi-commutativity to functions with different schemes. To
this end consider a sequence of partial orderings (D1, ~ 1), ... , (Dn, ~ n) and their
Cartesian product (D, ~).Take two functions, f with schemes and g with scheme t.
We say that f semi-commutes with g (w.r.t. ~)if J+ semi-commutes with g+ w.r.t.
~,that is if

for all Q ED.
The following lemma is crucial.

Lemma 8 (Semi-commutativity). Consider a CSP and two binary constraints of it,
C1 on u, z and C2 on x, y, where y ~ z.

Then the 7r1 function of C1 semi-commutes with the 7r1 function of C2 w.r.t. the
componentwise ordering ;2. D

Consider now a CSP P with a linear ordering -< on its variables and the corre
sponding CSP P-<. To be able to apply the above lemma we order the 7r1 functions of
the binary constraints of P-< in an appropriate way. Namely, given two 71'1 functions, f
associated with a constraint on u, z and g associated with a constraint on x, y, we put f
before g if y -< z.

More precisely, let x1, ... , Xn be the sequence of the variables of P-<. So x1 -< x2 -<
... ~ Xn. Let form E [1..n] the list Lm consist of the 7r1 functions of those binary
constraints of P-< that are on x i, Xm for some x i. We order each list Lm arbitrarily.
Consider now the list L resulting from appending Ln, Ln-1, .. . , L1, in that order, so
with the elements of Ln in front. Then by virtue of the Semi-commutativity Lemma 8 if
the function f precedes the function gin the list L, then f semi-commutes with g w.r.t.
the componentwise ordering 2.

We instantiate now the refinement of the SI algorithm for the compound domains
by the above-defined list Land each ..Li equal to the domain Di of the variable Xi· We
assume that L has k elements. We obtain then the following algorithm.

20

DIRECTIONAL ARC CONSISTENCY ALGORITHM (DARC)

d := (.11, · · ., .ln);
for i := 1 to k do

od

g := head(L); suppose g is with schemes;
L := tail(L);
d[s] := g(d[s])

This algorithm enjoys the following properties.

Theorem 5 (DARC Algorithm). Consider a CSP P with a linear ordering -< on its
variables. Let P-< := (C ; x1 E D1, ... , Xn E Dn)·

The DARC algorithm always terminates. Let P' be the CSP determined by P-< and
the sequence of the domains D~, .. . , D~ computed in d. Then

(i) P' is the r;d-least CSP in {P1 I P-< r;d Pi} that is directionally arc consistent
w.r.t. -<,

(ii) P' is equivalent to P. D

Note that in contrast to the HYPER-ARC Algorithm Theorem 3 we do not need to
assume here that each domain is finite.

Assume now that for each pair of variables x, y of the original CSP P there exists
precisely one constraint on x, y. The same holds then for P-<.. Suppose that P-< :=
(C; x 1 E D1 , ... ,xn E Dn). DenotetheuniqueconstraintofP-<. onxi,Xj byCi,j·
The above DARC algorithm can then be rewritten as the following algorithm known as
the DAC algorithm ofDechter and Pearl [6]:

for j := n to 2 by -1 do
for i := 1 to j - 1 do

D; := {aE D; I 3b E Dj (a,b) E C;,j}
od

od

11 DPC: a Directional Path Consistency Algorithm

In this section we deal with the notion of directional path consistency defined in Dechter
and Pearl [6]. As before we first characterize this local consistency notion in terms of
fixpoints. To this end, as in the previous section, given a normalized CSP P we rather
consider the equivalent CSP P-<. The variables of P-< are ordered according to -< and
on each pair of its variables there exists a unique constraint.

The following is a counterpart of the Directional Arc Consistency Lemma 7.

Lemma 9 (Directional Path Consistency). Consider a normalized CSP P with a lin
ear ordering-< on its variables. Let P-< := (C1 , ... , Ck ; VE.}. Then P is directionally
path consistent w.r.t. -< if! (C1, ... , Ck) is a common.fixpoint of all functions (f;,y)+
associated with the subsequences x, y, z of the variables ofP-<.. D

21

To obtain an algorithm that achieves directional path consistency we now instantiate
in an appropriate way the SI algorithm. To this end we need the following lemma.

Lemma 10 (Semi-commutativity). Consider a normalized CSP and two subsequences
of its variables, x1, Y1, z and x2, y2, u. Suppose that u-< z.

Then the fanction J:i,Y1 semi-commutes with the fanction r:2,Y2 w.r.t. the compo-
nentwise ordering ;2. D

Consider now a normalized CSP P with a linear ordering -< on its variables and the
corresponding CSP P-<. To be able to apply the above lemma we order in an appropriate
way the J;,s functions, where the variables r, s, tare such that r -< s -< t. Namely, we
putf:1 ,y1 beforef~2 ,y2 ifu-< z.

More precisely, let x1 , ... , Xn be the sequence of the variables of P-<, that is x1 -<
x2 -< ... -< Xn. Let form E [1..n) the list Lm consist of the functions f:;:x; for
some Xi and Xj. We order each list Lm arbitrarily and consider the list L resulting from
appending Ln, Ln-1, .. . , L 1, in that order. Then by virtue of the Semi-commutativity
Lemma 9 if the function f precedes the function g in the list L, then f semi-commutes
with g w.r. t. the componentwise ordering 2.

We instantiate now the refinement of the SI algorithm for the compound domains
by the above-defined list L and each 1-i equal to the constraint Ci. We assume that
L has k elements. This yields the DIRECTIONAL PATH CONSISTENCY ALGORITHM
(DPATH) that, apart from of the different choice of the constituent partial orderings,
is identical to the DIRECTIONAL ARC CONSISTENCY ALGORITHM DARC of the pre
vious section. Consequently, the DPATH algorithm enjoys analogous properties as the
DARC algorithm. They are summarized in the following theorem.

Theorem 6 (DPATH Algorithm). Consider a CSP P with a linear ordering -< on its
variables. LetP..,, := (C1 , ... , Ck; 'D£).

The DPATH algorithm always terminates. Let P' := (Cf, ... , CJ. ; 'D£), where the
sequence of the constraints Cf, ... , CJ. is computed in d. Then

(i) P' is the r:;,e-least CSP in {P1 I P..,, ~d Pi} that is directionally path consistent
w.r.t. -<.

(ii) P' is equivalent to P. D

As in the case of the DARC Algorithm Theorem 5 we do not need to assume here
that each domain is finite.

Assume now that that x 1 , ... , Xn is the sequence of the variables of P ..,,. Denote the
unique constraint of P..,, on Xii Xj by Ci,j.

The above DPATH algorithm can then be rewritten as the following algorithm known
as the DPC algorithm ofDechter and Pearl [6]:

for m := n to 3 by -1 do

od

for j := 1 tom - 1 do

od

for i := 1 to j - 1 do
Ci,j := C;,m . CJ,m

od

22

12 Conclusions

In this article we introduced a general framework for constraint propagation. It allowed
us to present and explain various constraint propagation algorithms in a uniform way.
Using such a single framework we can easier verify, compare, modify, parallelize or
combine these algorithms. The last point has already been made to large extent in Ben
hamou [2]. Additionally, we clarified the role played by the notions of commutativity
and semi-commutativity.

The line of research presented here could be extended in a number of ways. First, it
would be interesting to find examples of existing constraint propagation algorithms that
could be improved by using the notions of commutativity and semi-commutativity.

Second, as already stated in Apt [l], it would be useful to explain in a similar way
other constraint propagation algorithms such as the AC-4 algorithm of Mohr and Hen
derson (11], the PC-4 algorithm of Han and Lee [8], or the GAC-4 algorithm of Mohr
and Masini [12]. The complication is that these algorithms operate on some extension
of the original CSP.

Finally, it would be useful to apply the approach of this paper to derive constraint
propagation algorithms for the semiring-based constraint satisfaction framework of
Bistarelli, Montanari and Rossi [4] that provides a unified model for several classes
of"nonstandard" constraints satisfaction problems.

References

I. K. R. Apt. The essence of constraint propagation. Theoretical Computer Science, 221(1-
2):179-210, 1999. Available via http:/ /xx.x. lanl. gov/ archive/ cs/.

2. F. Benhamou. Heterogeneous constraint solving. In M. Hanus and M. Rodriguez-Artalejo,
editors, Proceeding of the Fifth International Co'!ference on Algebraic and Logic Pro
gramming (ALP 96), Lecture Notes in Computer Science l 139, pages 62-76, Berlin, 1996.
Springer-Verlag.

3. F. Benhamou and W. Older. Applying interval arithmetic to real, integer and Boolean con
straints. Journal of Logic Programming, 32(1):1-24, 1997.

4. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and opti
mization. Journal of the ACM, 44(2):201-236, March 1997.

5. R. Dechter. Bucket elimination: A unifying framework for structure-driven inference. Arti
ficial Intelligence, I 999. To appear.

6. R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems. Ar
tificial Intelligence, 34(1): 1-38, January 1988.

7. R. Dechter and P. van Beek. Local and global relational consistency. Theoretical Computer
Science, 173(1):283-308, 20 February 1997.

8. C. Han and C. Lee. Comments on Mohr and Henderson's path consistency algorithm. Arti
ficial Intelligence, 36:125-130, 1988.

9. A. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99-118,
1977.

10. K. Marriott and P. Stuckey. Programming with Constraints. The MIT Press, Cambridge,
Massachusetts, 1998.

11. R. Mohr and T.C. Henderson. Arc-consistency and path-consistency revisited. Artificial
Intelligence, 28:225-233, 1986.

23

12. R. Mohr and G. Masini. Good old discrete relaxation. In Y. Kodratoff, editor, Proceedings
of the 8th European Conference on Artificial Intelligence (ECAI), pages 651-656. Pitman
Publishers, 1988.

13. E. Monfroy and J.-H. Rety. Chaotic iteration for distributed constraint propagation. In
J. Carroll, H. Haddad, D. Oppenheim, B. Bryant, and G. Lamont, editors, Proceedings of The
1999 ACM Symposium on Applied Computing, SAC'99, pages 19-24, San Antonio, Texas,
USA, March 1999. ACM Press.

14. U. Montanari. Networks ofconstraints: Fundamental properties and applications to picture
processing. Information Science, 7(2):95-132, 1974. Also Technical Report, Carnegie Mel
lon University, 1971.

15. V.A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent constraint
programming. In Proceedings of the Eighteenth Annual ACM Symposium on Principles of
Programming Languages (POPL'91), pages 333-352, 1991.

16. V. Telerman and D. Ushakov. Data types in subdefinite models. In J. A. Campbell J. Calmet
and J. Pfalzgraf, editors, Artificial Intelligence and Symbolic Mathematical Computations,
Lecture Notes in Computer Science 1138, pages 305-319, Berlin, 1996. Springer-Verlag.

17. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

