
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2013 

Integrating iterative crossover capability in orthogonal neighborhoods for Integrating iterative crossover capability in orthogonal neighborhoods for 

scheduling resource-constrained projects scheduling resource-constrained projects 

Reza Zamani 
University of Wollongong, reza@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Zamani, Reza, "Integrating iterative crossover capability in orthogonal neighborhoods for scheduling 
resource-constrained projects" (2013). Faculty of Engineering and Information Sciences - Papers: Part A. 
1559. 
https://ro.uow.edu.au/eispapers/1559 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36997848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F1559&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F1559&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F1559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/1559?utm_source=ro.uow.edu.au%2Feispapers%2F1559&utm_medium=PDF&utm_campaign=PDFCoverPages


Integrating iterative crossover capability in orthogonal neighborhoods for Integrating iterative crossover capability in orthogonal neighborhoods for 
scheduling resource-constrained projects scheduling resource-constrained projects 

Abstract Abstract 
An effective hybrid evolutionary search method is presented which integrates a genetic algorithm with a 
local search. Whereas its genetic algorithm improves the solutions obtained by its local search, its local 
search component utilizes a synergy between two neighborhood schemes in diversifying the pool used by 
the genetic algorithm. Through the integration of these two searches, the crossover operators further 
enhance the solutions that are initially local optimal for both neighborhood schemes; and the employed 
local search provides fresh solutions for the pool whenever needed. The joint endeavor of its local search 
mechanism and its genetic algorithm component has made the method both robust and effective. The 
local search component examines unvisited regions of search space and consequently diversifies the 
search; and the genetic algorithm component recombines essential pieces of information existing in 
several high-quality solutions and intensifies the search. It is through striking such a balance between 
diversification and intensification that the method exploits the structure of search space and produces 
superb solutions. The method has been implemented as a procedure for the resource-constrained project 
scheduling problem. The computational experiments on 2,040 benchmark instances indicate that the 
procedure is very effective. 

Keywords Keywords 
crossover, capability, orthogonal, neighborhoods, integrating, scheduling, iterative, resource, constrained, 
projects 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Zamani, R. (2013). Integrating Iterative Crossover Capability in Orthogonal Neighborhoods for Scheduling 
Resource-Constrained Projects. Evolutionary Computation, 21 (2), 341-360. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/1559 

https://ro.uow.edu.au/eispapers/1559


Integrating Iterative Crossover Capability in
Orthogonal Neighborhoods for Scheduling

Resource-Constrained Projects

Reza Zamani reza@uow.edu.au
Faculty of Informatics, University of Wollongong, Wollongong, 2522, Australia

Abstract
An effective hybrid evolutionary search method is presented which integrates a genetic
algorithm with a local search. Whereas its genetic algorithm improves the solutions
obtained by its local search, its local search component utilizes a synergy between
two neighborhood schemes in diversifying the pool used by the genetic algorithm.
Through the integration of these two searches, the crossover operators further enhance
the solutions that are initially local optimal for both neighborhood schemes; and the
employed local search provides fresh solutions for the pool whenever needed. The
joint endeavor of its local search mechanism and its genetic algorithm component has
made the method both robust and effective. The local search component examines un-
visited regions of search space and consequently diversifies the search; and the genetic
algorithm component recombines essential pieces of information existing in several
high-quality solutions and intensifies the search. It is through striking such a balance
between diversification and intensification that the method exploits the structure of
search space and produces superb solutions. The method has been implemented as a
procedure for the resource-constrained project scheduling problem. The computational
experiments on 2,040 benchmark instances indicate that the procedure is very effective.

Keywords
Genetic algorithms, hybrid search, scheduling, resource-constrained projects, crossover
operations, computational intelligence.

1 Introduction

The large number of multifaceted problems existing in a wide variety of fields ranging
from telecommunication through logistics to production management has accelerated
research on efficient search mechanisms. These mechanisms should ideally be able
to effectively handle intelligent construction or generation of solutions for complex
problems. A few examples of these problems can be named as locating strategic en-
ergy reserves, providing efficient telecommunication network settings, and scheduling
enterprise projects under multiple resource constraints.

Having the paradigm of search as its fundamental concept, evolutionary compu-
tation is the study of computational intelligence via inspiration of multiagent systems,
which integrate various information-processing systems toward providing better solu-
tion strategies in problem solving. With respect to this broad coverage, any multiagent
heuristic, such as population-based strategies, which at each stage of the search ma-
nipulate a collection of solutions, can be referred to as an evolutionary method. As
evolutionary computation has been involved with solving these complex problems,

C© 2013 by the Massachusetts Institute of Technology Evolutionary Computation 21(2): 341–360



R. Zamani

the integration of population-based methods with other search techniques has become
quite essential.

In the literature of search techniques, integrating local searches with population-
based searches has been considered as one of the effective hybrids in search algorithms,
and a marriage between a population-based global search and a heuristic local search
has been referred to as a memetic algorithm (Moscato, 1989). The term memetic has
been used to refer to cultural evolution, as opposed to genetic evolution, which indicates
biological evolution. The analogy to cultural evolution stems from the fact that a solution
in a population-based method can interact with another solution when the solution
reaches a certain development through a local search.

Scatter search (Glover, 1994, 1998; Glover et al., 1995) can be considered as the other
key term that refers to integrating local searches with population-based searches. In
Glover et al. (1995) it was shown that despite significant differences existing between
genetic algorithms and tabu search, as a metaheuristic that guides a local search, these
two approaches have certain elements in common. In effect, it is through incorporating
local searches into genetic algorithms that the major design of scatter search was formed.
Advanced designs for scatter search were introduced in Marti et al. (2006).

Local searches are not the only major heuristic possible, because constructive meth-
ods play the same key role as local searches do. Whereas local searches operate based
on the exploration of solution neighborhoods, constructive methods assemble a solu-
tion in an incremental style; and whereas local searches iteratively search for improved
solutions and alter each candidate solution with one of its dominating neighbors, con-
structive methods use an evaluation function to iteratively select among different com-
ponents. In general, constructive methods directly assemble approximate solutions
through iteratively finding and fixing different components of a solution. In other
words, they iteratively increase the size of a partial solution until a complete solution is
obtained. In this sense, they contrast to local searches, which start from an initial com-
plete solution and repeat altering its different components in the hope of producing a
better complete solution.

1.1 Combining Biases Used in Genetic Algorithms and Local Searches

The point is not simply that genetic algorithms, local searches, and constructive heuris-
tics conduct the search toward high-quality regions. The deeper issue is that these
techniques impose certain biases toward directing the exploration of solution space. It
is through combining these biases that one can expect to achieve high-quality solutions
via integrating two or more effective search mechanisms.

In this paper, we present a method called crossed-over orthogonal neighborhoods
explorer (CONE) which combines the biases used in genetic algorithms and local
searches and through the combination of these biases directs the search from a large
base of solutions to smaller bases. Whereas in its genetic algorithm component, the
CONE generates further local optimal solutions when diversification is needed, in its
local search component, it utilizes the synergy between two versatile neighborhood
schemes and maintains necessary high-depth.

By balancing intensification versus diversification and the iterative crossover of
locked solutions, the CONE is aimed at exploring the promising parts of search space.
A solution is considered to be locked when the alternation of two orthogonal neigh-
borhood schemes cannot improve it, and the neighborhood schemes employed are
orthogonal in the sense that they share no single solution. The CONE also limits the

342 Evolutionary Computation Volume 21, Number 2



RCPSP: Crossover in Orthogonal Neighborhoods

size of neighbors and improves their effectiveness through considering propagated
infeasibility in preventing the formation of unfruitful swaps.

The CONE can be considered as a memetic algorithm (Moscato, 1989), which com-
bines biases used in local search with those used in genetic algorithms. It is worth noting
that, recently, the concept of memetic algorithms has shown successful applications in
many different areas like continuous optimization (Molina et al., 2010), optimization
with multiple criteria (Wanner et al., 2008), as well as classifying systems (Bacardit
and Krasnogor, 2009). In effect, some of the most efficient procedures based on this
concept are now used under the different titles of hybrid evolutionary algorithms (Deb
and Sinha, 2010), cultural algorithms (Farahmand et al., 2010), and genetic local search
(Fukunaga, 2008).

1.2 The Resource-Constrained Project Scheduling Problem

To show how effectively the CONE can perform, its application to the resource-
constrained project scheduling problem (RCPSP) is presented. The reason why the
RCPSP was selected is that solving the RCPSP is a growing challenge in many enter-
prise organizations, and the problem is of particular interest to systems planners, civil
engineers, and project managers. In effect, the combination of its simple description
and its inherent complexities has made this problem subject to extensive research in
operations research, in general, and combinatorial optimization, in particular.

The single-mode RCPSP can be described as follows. In a project with J activities
labeled j = 1, 2, . . . J, in which the precedence relations between activities are represented
by the set of immediate predecessors, Pj , the objective is to determine the starting times
of activities, Tj , j = 1, 2, . . . , J , subject to resource and precedence constraints, so that
the project completion time is minimized.

For activity j, the set of immediate predecessors, Pj , indicates that it cannot start
unless all activities in Pj have been completed. The starting and ending fictitious activ-
ities are shown by 0, and J + 1, respectively, and have zero duration and no resource
requirements, indicating that the completion time of the project can be shown with
TJ+1. In this setting, the number of resource types is shown by K , and the availability
of resource type k is represented by Rk ; moreover, dj and rjk represent the duration
of activity j and its request for resource k, respectively. There are many procedures
developed to solve this problem, which are divided into two main classes of exact and
heuristic methods. The detailed applications, backgrounds, and surveys on the solu-
tion methodologies of the RCPSP have been presented elsewhere (Kolisch and Padman,
2001; Kolisch and Hartmann, 2006).

The rest of the paper is as follows. In Section 2, the related work is discussed. Section
3 presents the proposed method. The computational results are presented in Section 4.
Finally, Section 5 sketches several directions for further development of the method.

2 Related Work

Related work is discussed in two different subsections. The first subsection presents a
brief survey on related search techniques and the second subsection introduces some
major methods currently used to solve the RCPSP.

2.1 A Brief Survey on the Related Search Techniques

The term metaheuristic was first introduced in Glover (1986) where tabu search was
presented. In general, this term refers to a creative strategy for guiding a heuristic, with
its design being based on a wide variety of inspirations. These inspirations can be either

Evolutionary Computation Volume 21, Number 2 343



R. Zamani

taken from nature or specifically devised based on a novel intuition. In effect, each
metaheuristic is constructed based on a collection of creative insights that can direct a
wide variety of heuristics, aiming at effective coordination of the search in achieving
superb solutions.

Metaheuristics can be divided into four categories: (1) evolutionary metaheuristics,
(2) local-search-based metaheuristics, (3) constructive metaheuristics, and (4) hybrids.
Whereas evolutionary metaheuristics mainly include genetic algorithms, local-search-
based metaheuristics, which guide local search heuristics, include (1) simulated an-
nealing (Kirkpatrick et al., 1983), (2) tabu search (Glover, 1986), (3) guided local search
(Voudouris and Tsang, 2003), and (4) iterated local search (Lourenco et al., 2003). Con-
structive metaheuristics, which comprise the third category and guide constructive
heuristics, include greedy randomized adaptive local search (Feo and Resende, 1995),
and ant colony optimization (Dorigo and Gambardella, 1997). The term, Orthogonal
method (Hu et al., 2008), has been used for effective guidance of ant colony opti-
mization techniques and is based on orthogonal design techniques widely applied in
scientific research. It is worth mentioning that orthogonal neighborhood-preserving
discriminant analysis has been successfully applied in the area of face recognition (Hu,
2008).

The fourth category, hybrids, can be considered as any amalgamation of the mem-
bers of the first three categories. Two prominent members of the hybrids category are
scatter search (Glover, 1994) and memetic algorithms (Moscato, 1989), both of which
combine local searches with genetic algorithms. In general, the above metaheuristic
provides a specific framework in coping with local optimality via conducting the un-
derlying problem-specific heuristic.

Local-search-based metaheuristics operate based on manipulating complete solu-
tions. In effect, the term local search signifies moving from one complete state to the
next complete state through a local variation to the value(s) of one or more variables
(Dechter, 2003). Local search differs from a constructive search in that a local search
typically explores a search space whose states are complete, whereas a constructive
search seeks to complete a partial solution through different stages. The reason why a
metaheuristic is needed to guide local searches is that they have the limitation of getting
stuck in local optima and a metaheuristic, as a general extendable framework, can assist
them in escaping local optimality.

Not only with local-search metaheuristics, but with the other three categories,
should the most important component of design focus on striking a balance between
getting stuck in a series of high-quality solutions and taking exploration strategies for
searching other parts of search space. In other words, whereas such a trade-off should
ensure that attention is paid to features historically found suitable, it should not prevent
the exploration of unvisited regions.

Neighborhood relations are the major ingredients of local searches; and in a k-
exchange neighborhood, two candidate solutions are neighbors if and only if they
differ in at most k solution components. It is true that larger neighborhoods contain
potentially better candidate solutions, but they lead to generating an unmanageable
number of neighbors. One of the effective methods in dealing with this dilemma is the
Lin and Kernighan (1973) method which has successfully been applied to the traveling
salesman problem. The success of this method has inspired the development of many
effective methods, such as variable neighborhood decomposition (Hansen et al., 2001),
and variable depth search (VDS; Hoos and Stutzle, 2005), all with the goal of integrating
simple neighborhoods to represent the behavior of complex and large neighborhoods.

344 Evolutionary Computation Volume 21, Number 2



RCPSP: Crossover in Orthogonal Neighborhoods

2.2 A Brief Survey of RCPSP Procedures

The procedures developed to tackle the RCPSP are divided into two major classes of ex-
act and heuristic methods. The most efficient exact methods for the problem have been
presented elsewhere (Demeulemeester and Herroelen, 1992, 1997; De Reyck and Her-
roelen, 1998; Brucker et al., 1998; Mingozzi et al., 1998; Nazareth et al., 1999; Sprecher,
2000; Dorndorf et al., 2000; Zamani, 2001; Demassey et al., 2005). In general, strategies
used in producing optimal procedures include dynamic programming, zero-one pro-
gramming, constraint propagation, and implicit enumeration with branch and bound
techniques. The algorithms in this class cannot solve all of the instances with 60 activities
introduced in Kolisch and Sprecher (1996).

Heuristic methods have been studied elsewhere (Kolisch, 1995, 1996a; Özdamar
and Ulusoy, 1995; Kolisch and Drexl, 1996; Cho and Kim, 1997; Mori and Tseng, 1997;
Hartmann, 1998, 2002; Kochetov and Stolyar, 2003; Valls et al., 2004; Debels et al., 2006;
Zamani, 2010). Theoretical results on the two building blocks of heuristic methods,
which are called parallel and serial schemes, were presented in Kolisch (1996b).

In Kolisch and Padman (2001), heuristic algorithms were categorized as priority-
rule based, truncated branch and bound, disjunctive-arc based, and metaheuristic
techniques; and also in Sprecher (2002); Zamani (2004); Debels and Vanhoucke (2007);
Zamani (2011), four decomposition techniques were presented that can integrate heuris-
tics and exact as well as near-exact and genetic algorithms to tackle the RCPSP. The per-
formances of several important heuristics for the problem were investigated in Kolisch
and Hartmann (2006), concluding that forward-backward improvement (FBI), scatter
search, and path-relinking ideas can contribute highly to solution quality when incor-
porated in a proper framework. Two of the recent effective hybrids that were presented
for this problem are a path-relinking search presented in Mobini et al. (2009), and a
hybrid combing ant colony optimization, scatter search, and local search, presented in
Chen et al. (2010).

2.2.1 Priority Rules and Forward/Backward Methods
Priority rules have long been considered as one of the facilitating mechanisms in pro-
viding solutions for the RCPSP. To direct a search method, these priorities can be
represented either in a form of a random key representation or an activity list (Kolisch,
1996a). Whereas random key representation is a list of numbers, with each number
representing the priority of its corresponding activity, an activity list represents the or-
der of activities based on their priorities. Recently, random key representation has been
modified to eliminate some of its inefficiencies (Debels et al., 2006). A key point with
this modification is to employ a topologic order that uses the same order for activities
with the same start time. This modified representation guarantees that each solution
corresponds to a unique schedule.

Solving the RCPSP in the forward and backward directions is also one of the other
facilitating mechanisms in providing effective solutions to the RCPSP. A method called
iterative forward-backward scheduling has been developed in Li and Willis (1992) and
because of its effectiveness in generating high-quality solutions, it has been incorporated
in several effective frameworks.

One of these frameworks is called justification (Valls et al., 2005) and is based on
right active schedules, which are defined as mirror shifting of left-active or simply
active schedules. For justifying a given activity to the right (left), a schedule is found
in which the starting times of all activities except the given activity remain the same
and the starting time of the given activity increases (decreases). Except for the ending

Evolutionary Computation Volume 21, Number 2 345



R. Zamani

activity, this procedure right-justifies activities one at a time in the hope that the starting
times of all critical activities increase and in this way the duration of the entire project
decreases. The mirror of these operations is applied for the left justification.

Similar to the justification platform, in Tormos and Lova (2001) a multipass method
has been presented that uses random sampling and performs backward-forward passes.
In successive passes, this method aims at obtaining project duration shorter than the
incumbent solution.

The forward-backward technique has also been used in boosting diversification.
The critical activity reordering algorithm (CARA; Valls et al., 2003) is a nonstandard
implementation of tabu search in which diversification is provided through a strategic
oscillation mechanism loosely related to the forward-backward technique. CARA em-
ploys the topological order (TO) representation of schedules, which plays the role of
priority values. To improve a given feasible schedule, CARA attempts to advance the
start times of its all critical activities, which are activities with zero total slack. To ad-
vance the starting times of critical activities, it advances the starting times of noncritical
activities if needed.

2.2.2 Self-Adaptation, Peak Crossover, and Variable Neighborhood Search
The self-adaptation capability of some algorithms in determining specific values for
their parameters, in response to each specific instance, plays a key role in their efficiency.
In Hartmann (2002) a self-adapting genetic algorithm has been presented that makes use
of two different decoding mechanisms as well as an additional gene that determines
the decoding mechanism employed, with each decoding mechanism converting an
activity list to a schedule and being based on either a parallel or a serial method. The
results of the corresponding computational experiments show that this self-adaptation
mechanism is very effective.

Similar to the concept of self-adaptation, a concept called peak crossover (Valls
et al., 2003, 2008) has also been employed to improve the performance of the genetic
algorithms specifically developed to solve the RCPSP. Peak crossover operators, rather
than randomly combining selected parts of good solutions, prioritize portions with
higher usage of resources. The use of a peak crossover operator is involved with using
an activity list that should be compatible with the starting times of activities, that is, if an
activity has started before a given activity, it should also appear before the given activity
in the list. A parameter called resource utilization ratio threshold (δ) determines which
periods of time should be considered as periods with a high usage of resources. The
value of δ is randomly set in the range between 0.75 and 0.9. This random setting causes
crossover operations operating on the same genomes to lead to different offspring.

Another effective search mechanism, a variable neighborhood search (VNS) method
for the RCPSP, was presented in Fleszar and Hindi (2004), which employs the concept
of lower bounding and performs precedence augmentation. It uses two types of so-
phisticated move strategies. In this search, a forceful move strategy, called enhanced
move, was employed that shifts an activity forward (backward) in any range along with
its successors (predecessors). This extends the left (right) limit of a boundary that an
activity can shift, and effectively enlarges the size of the neighborhood.

3 The Crossed-Over Orthogonal Neighborhood Explorer (CONE)

As a memetic algorithm, the CONE was developed based on balancing the two features
of high depth and mobility of the search. CONE achieves mobility via the alternation
of two synergetic neighborhood schemes; and it attains high depth through iterative

346 Evolutionary Computation Volume 21, Number 2



RCPSP: Crossover in Orthogonal Neighborhoods

Figure 1: The triple activities interchange (TAI) scheme.

crossover of locked solutions. It is through these two features that it iteratively discovers
high-quality solutions and combines these solutions to attain a solution with a higher
quality.

Both neighborhood schemes employed in the CONE use activity list representation,
in which, with respect to a given schedule, activities with smaller starting times appear
sooner than those with greater starting times (Valls et al., 2003). Each activity list is
converted into two schedules through the applications of serial and parallel methods
(Kolisch, 1996b) followed by a backward forward (BF) iteration (Tormos and Lova,
2001). Among the two schedules produced, the best one is selected.

The two orthogonal neighborhood schemes employed operate on the same activity
list and improve it progressively. In employing these neighborhood schemes, two factors
are the key contributors in achieving high-quality solutions: (1) the set of neighbors
generated by the first scheme does not have any intersection with the set generated
by the second scheme, and (2) many unfruitful neighbors are prevented from being
scheduled.

3.1 Triple Activities Interchange (TAI)

The first neighborhood scheme is a modified version of the typical three-exchange
neighborhood. In the three-exchange neighborhood, two candidate solutions are neigh-
bors if and only if they differ in, at most, three solution components. The difference
between this new neighborhood, which we call the triple activities interchange (TAI),
and the typical three-exchange neighborhood, is that in the TAI, two candidate solutions
are neighbors if and only if they differ in exactly, rather than at most, three solution
components. The TAI can alter the locations of every three nonadjacent activities on the
list systematically and produce associated neighbors.

As is depicted in Figure 1, every three activities can at most be interchanged in
five different ways, among which only two of them change the positions of all three
activities. For efficiency purposes that will be discussed later, the TAI uses only these
two neighbors and ignores the rest. As is seen, only the third and forth orders in Figure
1 interchange all three activities. The reason is that the first order changes the positions
of only f and d, the second order changes the positions of only b and d, and the fifth

Evolutionary Computation Volume 21, Number 2 347



R. Zamani

Figure 2: The double partitions interchange (DPI) scheme.

order changes the positions of only f and b. Among the two orders changing all three
activities, if any of them proves to be an activity list, it is considered as a neighbor.

One of the advantages of the TAI is that for generating neighbors, not all triplets
need to be considered for interchange. The reason is that the CONE avoids many
unnecessary interchanges when the interchange of a triplet is found infeasible, and this
has been facilitated through detecting all related infeasible interchanges. Computational
efficiency gained by ignoring unfruitful triplets contributes to the effectiveness of the
procedure significantly.

3.2 Double Partitions Interchange (DPI)

The second neighborhood scheme, called the double partitions interchange (DPI) is
more sophisticated than the TAI because it operates based on partitions and swaps every
two partitions systematically, with a partition being defined as a group of contiguous
activities on the activity list. The partitions that are swapped can be either adjacent
or separated by another partition. Hence, if X, Y, and Z represent three sequential
partitions, the DPI converts XYZ to ZYX. Figure 2 illustrates this conversion.

As can be seen, the partitions X and Z have been separated by the partition Y,
which can be a null partition. In the cases where Y is a null partition, XZ is converted
to ZX. The CONE implicitly enumerates all double partitions for swapping, regardless
of whether or not they have been separated by a third partition. The swaps which
violate precedence constraints are ignored and only those which lead to the generation
of activity lists are considered.

As is true with the TAI, the number of neighbors is limited by the consideration
of propagated infeasibility, and as soon as the swapping of two partitions leads to
infeasibility, the CONE detects all related infeasible swaps. This detection is toward
improving efficiency by avoiding unnecessary computational expenses and has proved
to be very effective.

3.3 Limiting the Moves and Converting Activity Lists to Schedules

To limit the moves performed by the DPI and TAI, we have extended the concept of
peak crossover mentioned in the literature survey and have used it in the context of
local search. Based on this extended concept, activities placed in portions with higher
usage of resources in the activity list will never be subject to changing their position.
Hence, based on any given resource utilization ratio threshold (δ), an activity list can
have several contiguous parts which should remain unchanged. Each contiguous part

348 Evolutionary Computation Volume 21, Number 2



RCPSP: Crossover in Orthogonal Neighborhoods

of the activity list includes several activities and is associated with a specific peak. The
value of δ is between zero and one. It should be noted that the smaller values of this
parameter lead to a smaller number of neighbors.

As mentioned, the CONE uses two methods for converting an activity list into a
schedule, namely, the serial and parallel methods (Kolisch, 1996b). By assigning higher
priorities to activities with lower order, and executing them one after another, the serial
method can convert any activity list into a feasible schedule. The parallel method, on
the contrary, at each stage, increases time based on the completion of activities and
selects among eligible activities those with higher priority.

3.4 The C-type Pseudocode of the CONE

Algorithm 1 presents a C-type pseudocode describing the operations of the CONE.
The pseudocode starts by generating a random activity list at line 3. This activity list
is revised in two nested while loops at lines 17 and 20. The inner while loop (line 20)
performs gradient descent operations, and the outer while loop (line 17) alternates the
TAI and DPI neighborhood schemes. Moreover, a while loop starting at line 5 creates
a diverse pool of locked solutions based on different activity lists generated at lines 3
and 43. The iterative crossover operations are performed at line 45, in which the initial
pool filled by lines 3 through 44 is refined. In other words, line 45 activates a genetic
algorithm for improving the results and exchanges information between high quality
solutions kept in the pool. Exchanging information between high quality solutions is
aimed at increasing the power of the search in achieving a solution with a better quality
than that of the best solution obtained so far. Line 45 is further clarified later in this
section.

In Algorithm 1, the best makespan is called QualityMakespan, and is initialized
in line 4. Whenever this variable is updated (explicitly at lines 13 and 41 as well as
implicitly at line 45), its associated schedule is also saved. The inner while loop (line 20)
is performed until a local optimal solution is obtained for the associated neighborhood
scheme. The solution obtained in this stage is further improved by another while loop
(line 17), which converts it into a local optimal solution for the other scheme.

A Boolean variable called Switch, initialized at line 15 and updated in lines 19
and 30, ensures that as far as the application of one neighborhood scheme breaks the
deadlock occurred by the application of the other scheme, the two schemes can, in
turn, be applied and improve the solution. In the situations where a local optimal
solution is surrounded by many neighboring local optimal solutions, this switching
causes several of these neighboring local optimal solutions to be visited without any
significant computational effort. Figure 3 depicts such a situation.

Moreover, a variable called NSwitches, initialized at line 16 and updated at line
38, guarantees that each neighborhood scheme is used at least once. This variable is
useful in situations where the TAI scheme is incapable of making any improvement.
This occurs only in the cases where S, generated as an initial solution at line 3, is a local
optimum for the TAI scheme.

The simultaneous use of the two variables of Switch and NSwitches ensures that
when the inner (line 20) and outer (line 17) nested while loops are terminated, the
solution obtained is a local optimum for both the TAI and DPI schemes. The while loop
presented at line 5 repeats these operations and fills a pool of high quality solutions
that are local optimal for both orthogonal neighborhood schemes.

Line 45 improves the high quality pool of the locked solutions through crossover
operations. For this purpose, two members of the pool are randomly selected and

Evolutionary Computation Volume 21, Number 2 349



R. Zamani

Algorithm 1 The C-type pseudocode of the CONE based on the simplified assumption 
of separating the genetic algorithm from its local search component

one-point and two-point crossover operations are performed on them to create two
activity lists. Then, each of the resultant activity lists is converted into two schedules
through the applications of serial and parallel methods (Kolisch, 1996b), each followed
by a BF iteration (Tormos and Lova, 2001).

The best schedule generated can replace the schedule with the lowest quality in the
pool if it improves this comparatively low quality schedule. In the cases where the two
selected parents are similar to one another, the employed genetic algorithm replaces

350 Evolutionary Computation Volume 21, Number 2



RCPSP: Crossover in Orthogonal Neighborhoods

Figure 3: (a) A local optimal solution surrounded by many other local optimal solu-
tions. (b) The corresponding easy-to-find optimal solution.

the parent which has lower quality with a fresh solution being local optimal for both
orthogonal neighborhood schemes. In other words, line 45 can implicitly call lines 3
through 44 as many times as needed.

4 Computational Experiments

Computational experiments were performed using a DELL PC (1.86 GHz) with Win-
dows XP operating system and 2 GB of RAM from which at most 1 GB of RAM was
used. The algorithm was coded in C++ and the performance of the procedure was
examined on 2,040 benchmark instances obtainable from the PSPLIB library (Kolisch
and Sprecher, 1996).

These instances are composed of four sets, namely j30, j60, j90, and j120. Each of the
first three sets includes 480 instances, whereas the last set, j120, includes 600 instances,
2,040 = 3 × 480 + 600. The number at the end of each set name indicates the number of
activities that each instance of the corresponding set has. For example, each benchmark
instance in the set j120 has 120 activities.

Whereas all optimal solutions for the set j30 have been identified in the literature,
the optimal solutions for many instances of the sets j60, j90, and j120 are still unknown.
For this reason, in the literature, instead of using the criterion of Optimal dev%, as the
percentage of deviation from an optimal solution, the criterion of CPM dev%, as the
percentage of deviation from the CPM lower bound, has been used for benchmarking
the results. The CPM lower bound is obtained by removing the limits on the availability
of resources and solving the simplified problem. In effect, such a simplified problem in-
cludes only precedence constraints, which determine the precedence relations between
activities, and can be easily solved.

4.1 The Parameter Setting Phase

Because of the large number of benchmark instances, the parameter setting phase was
performed in two separate stages. In the first stage, a small number of benchmark
instances was selected, and a large number of combinations for the values of the pa-
rameters were tested on them. In the second stage, the combination of a small number
of critical parameters, determined in the first stage, was tested on the entire 2,040 bench-
mark instances. Even keeping the number of critical parameters at two and considering

Evolutionary Computation Volume 21, Number 2 351



R. Zamani

only four values for each parameter, the number of times the program was run in the
second stage is 32,640, 4 × 4 × 2040.

In order for the small instances selected in the first stage to be a fair representative
of the hard-to-solve instances, we have considered the fact that these 2,040 benchmark
instances were originally produced, by their authors, through the systematic variation of
network complexity (NC), resource strength (RS), and resource factor (RF). Whereas NC
determines the ratio of nonredundant precedence relations to the number of activities,
RF shows the portion of resource types which an activity uses on average. The third
factor, RS, shows the degree of constraints on the resources in the range between 0 and 1;
the larger this value, the less constrained the resources are. Therefore, when RS is 1, the
resources are so abundant that each activity can start as soon as all of its predecessors
have been completed.

As the result of the first phase, we set the number of generated schedules to 50,000
and found out that for this number of generated schedules, two parameters mainly
affected the performance of the procedure: the utilization ratio threshold (δ), and the
population size (η). In addition, the results of experimentations in phase 1 indicated that
when δ is set to a value greater than 0.85 or η is set to a value greater than 10, the results
deteriorated. However, the differences could not be shown to be statistically significant
and this reveals the robustness of the procedure: the CONE is not highly dependent on
the values of its parameters.

As will be shown, even in phase 2, the statistical test of ANOVA (analysis of vari-
ance) has not found any significant difference among the 16 combinations considered.
The result of this statistical test will be discussed in presenting the results of phase 2, in
which four different values for δ and four different values for η were considered. The
values considered for δ are 0.70, 0.75, 0.80, and 0.85; and the values considered for η are
4, 6, 8, and 10. This has created 16 combinations to be tested, and with each of these 16
combinations, the procedure was run on the entire 2,040 instances.

Before presenting the results of phase 2 of the parameter setting, we emphasize
that in the cases in which the two chosen parents are similar, the genetic algorithm
component replaces the parent which has lower quality with a fresh solution that is
obtained through its local search component. This may describe why the values over
10 for η have not produced solutions with higher quality. Moreover, when the value of
δ reaches beyond 0.85, δ can rarely limit the number moves, and when the δ value is
below 0.75, it limits the number of moves exceedingly. This also may be a reason why
in phase 1, the values outside this range could not perform better than those inside the
range.

Table 1 shows the results of the second phase of parameter setting. As is seen
with each combination, both CPM dev% and Best dev% have been reported. Note that
Best dev% shows the percentage of division from the best available solution in the
literature and is not as reliable as CPM dev%. The reason is that by the passage of time,
better solutions are made available, and this makes the Best dev% criterion invalid. As
is seen, the procedure has produced the best result for set j30 when the combination of
δ = 0.80, η = 4 was used. In effect, with this combination, the CONE found the optimal
solutions of all 480 instances of the set j30.

For the set j60, the combination of δ = 0.70, η = 8 and for the sets j90 and j120,
the combination of δ = 0.75, η = 10 produced the best results. These computational
experiments indicate that a fixed combination of δ and η does not work perfectly for all
four sets. That is why the procedure has been used with δ = 0.80, η = 4 for the set j30,
with δ = 0.70, η = 8 for set j60, and with δ = 0.75, η = 10 for sets j90 and j120.

352 Evolutionary Computation Volume 21, Number 2



RCPSP: Crossover in Orthogonal Neighborhoods

Table 1: The performance of the CONE measured by percentage deviation from the
best available solutions and CPM lower bound for each set j30, j60, j90, and j120, based
on 16, 4 × 4, combinations of threshold delta (δ) and pool size (η).

Threshold delta (δ)

0.7 0.75 0.8 0.85

%Dev %Dev %DEV %Dev %Dev %Dev %Dev %Dev
Pool size (η) CPM BEST CPM BEST CPM BEST CPM BEST

4 J30 13.38 0.00 13.38 0.00 13.37 0.00 13.38 0.00
J60 10.66 0.17 10.68 0.19 10.67 0.18 10.72 0.21
J90 10.11 0.29 10.11 0.28 10.13 0.30 10.19 0.34
J120 31.84 1.14 31.87 1.14 31.88 1.15 31.92 1.02

6 J30 13.38 0.00 13.38 0.00 13.39 0.01 13.39 0.01
J60 10.67 0.19 10.69 0.19 10.67 0.18 10.68 0.19
J90 10.11 0.29 10.11 0.28 10.08 0.27 10.14 0.31
J120 31.66 1.03 31.82 1.12 31.76 1.10 31.86 1.19

8 J30 13.39 0.01 13.38 0.00 13.39 0.01 13.38 0.00
J60 10.64 0.16 10.67 0.18 10.67 0.18 10.67 0.18
J90 10.06 0.25 10.11 0.28 10.07 0.26 10.11 0.30
J120 31.74 1.08 31.67 1.05 31.73 1.08 31.90 1.22

10 J30 13.38 0.01 13.38 0.00 13.38 0.00 13.39 0.01
J60 10.65 0.17 10.67 0.18 10.66 0.17 10.07 0.20
J90 10.07 0.26 10.03 0.23 10.08 0.27 10.14 0.32
J120 31.65 1.04 31.65 1.04 31.73 1.07 31.96 1.25

Based on these values, the performance of the procedure was categorized based on
different values of NC, RF, and RC. Table 2 shows the results. As is shown in this table,
the performance of the procedure for nearly all categories is satisfactory and the only
two categories for which the value of %Dev-BEST is larger than 3 are those with four
characteristics: (1) having 120 activities, (2) RS = 0.1, (3) NC = 1.5, and (4) RF between
0.5 and 0.75. In effect, for the majority of groups, %Dev-BEST is under 1. Note that each
group includes 10 instances, and the groups of simple instances, those with RS = 1,
were not included in the table because %Dev-BEST for these groups is zero.

In addition, ANOVA shows the robustness of the CONE, through reporting no
significant difference among the performance of the procedure for the 16 combinations
mentioned. ANOVA’s results are as follows: variation between groups (49.52) with 15
DOF and variation within groups (31,589,883) with the 32,624 DOF, f -stat = 0.003,
α = 0.05, f -critical = 1.666. Note that, as stated, 32,624 is the number of times the
procedure was executed in phase 2, 32,624 = 16 × 2040.

4.2 Comparing the Performance of the CONE with Other Procedures

The results of our computational experiments were compared with the results obtained
for local search with subproblem exact resolution (LSSPER; Palpant et al., 2004). LSSPER
is a state of the art procedure that has improved 14, 9, and 4 of the best solutions for the
sets j60, j90, and j120, respectively. The developers ran LSSPER on a personal computer
with 1 GB RAM and 2.3 GHz speed. Table 3 compares the results produced by the
CONE with those produced by LSSPER.

As Table 3 indicates, for three out of four sets, the CONE produced better results in
shorter times. For set j30, both procedures produced the same result. In effect, for this
set, both the CONE and LSSPER produced the optimal solutions of all 480 instances.

Evolutionary Computation Volume 21, Number 2 353



R. Zamani

Ta
bl

e
2:

T
he

av
er

ag
e

of
pe

rc
en

ta
ge

d
ev

ia
ti

on
fr

om
th

e
be

st
av

ai
la

bl
e

so
lu

ti
on

s
in

th
e

lit
er

at
ur

e
fo

r
al

lp
os

si
bl

e
co

m
bi

na
ti

on
s

of
N

C
,R

F,
an

d
R

S,
w

it
h

ea
ch

ce
ll

st
an

d
in

g
fo

r
10

d
if

fe
re

nt
in

st
an

ce
s

w
hi

ch
ha

ve
th

e
sa

m
e

N
C

,R
F,

an
d

R
S.

N
C

=
1.

5
N

C
=

1.
8

N
C

=
2.

1

R
S

R
F

=
0.

25
R

F
=

0.
50

R
F

=
0.

75
R

F
=

1.
00

R
F

=
0.

25
R

F
=

0.
50

R
F

=
0.

75
R

F
=

1.
00

R
F

=
0.

25
R

F
=

0.
50

R
F

=
0.

75
R

F
=

1.
00

Si
ze

60
0.

2
0.

00
0.

66
0.

62
1.

36
0.

00
0.

32
0.

39
1.

20
0.

00
0.

92
0.

43
1.

05
0.

5
0.

00
0.

00
0.

00
0.

44
0.

00
0.

00
0.

14
0.

12
0.

00
0.

00
0.

00
0.

22
0.

7
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
Si

ze
90

0.
2

0.
11

0.
97

2.
00

1.
25

0.
00

0.
69

1.
25

1.
08

0.
00

0.
73

1.
13

1.
20

0.
5

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
23

0.
00

0.
00

0.
00

0.
23

0.
22

0.
7

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

Si
ze

12
0

0.
1

0.
91

3.
23

3.
55

2.
53

0.
86

1.
81

2.
90

2.
50

0.
49

1.
88

2.
67

2.
09

0.
2

0.
33

2.
00

2.
56

1.
68

0.
39

1.
25

2.
27

1.
88

0.
54

1.
20

1.
76

1.
85

0.
3

0.
00

1.
17

1.
99

1.
28

0.
00

0.
56

1.
99

1.
51

0.
00

0.
72

1.
46

1.
39

0.
4

0.
00

0.
12

0.
64

0.
84

0.
00

0.
11

0.
55

0.
98

0.
00

0.
21

1.
11

1.
40

0.
5

0.
00

0.
00

0.
00

0.
13

0.
00

0.
24

0.
20

0.
00

0.
00

0.
00

1.
10

0.
63

354 Evolutionary Computation Volume 21, Number 2



RCPSP: Crossover in Orthogonal Neighborhoods

Table 3: Comparing the performance of the CONE measured by percentage deviation
from the CPM lower bound from that of LSSPER for each set j30, j60, j90, and j120.

CONE, computer speed = 1.86 GHz LSSPER, computer speed = 2.3 GHz

Benchmark sets Average CPM dev % Time (s) Average CPM dev % Time (s)

j30 13.37 1 13.37 10
j60 10.64 2 10.81 38
j90 10.03 4 10.29 61
j120 31.65 5 32.41 207

Table 4: Comparing the performance of the CONE with that of of six high performance
procedures based on percentage deviation from optimal solution for the set j30 and
percentage deviation from CPM lower bound for the sets j60, and j120.

Benchmark set

Reference∗ j30 j60 j120

This paper 0.00 10.64 31.65
Chen et al., 2010 0.01 10.67 30.56
Mobini et al., 2009 0.01 10.57 31.37
Mendes, Gonçalves, et al., 2009 0.01 10.67 31.44
Valls et al., 2008 0.02 10.73 31.24
Debels et al., 2006 0.01 10.71 31.57
Valls et al., 2005 0.01 10.74 31.58
∗All with the limit of generating 50,000 schedules for each instance in each
set.

With respect to its performance, CONE has also been compared with six high
performance procedures shown in Table 4 (Chen et al., 2010; Mobini et al., 2009; Mendes,
Gonçalves, et al., 2009; Valls et al., 2008; Debels et al., 2006; Valls et al., 2005). Since for
the set j90, these six procedures do not have any results, the comparison is only based
on the sets j30, j60, and j120.

It is worth mentioning that CONE and these six procedures have all been run with
the same limit of generating 50,000 schedules, and this limit makes the speed of the
computer on which they have been run as well as their execution times inconsequential.
As is seen in Table 4, an interesting point in this comparison is that none of these six
procedures has been able to produce optimal solutions for all 480 instances of the set
j30, whereas CONE has produced optimal solutions for all these instances, and this has
set the percentage of deviation from optimal solutions to zero.

4.3 Remarks on Computational Experiments

At the end of this section, two points are worth mentioning. First, we deactivated the
genetic algorithm part of the CONE and let the modified procedure generate the same
number of schedules, 50,000. As a result, we found that for 91%, 76%, 73%, and 31%
of instances in the sets j30, j60, j90, and j120, respectively, the solutions produced by
the simplified procedure were the same as those produced by the CONE. This also
indicated that the average ratio improvement made in the solutions by the genetic
algorithm component with two significant digits were 0.00, 0.01, 0.01, and 0.03, for the
sets j30, j60, j90, and j120, respectively. The statistical t-test confirms the significance
of the genetic algorithm component. The values produced by the t-test are as follows:
2,039 DOF, t-stat = 24.02, α = 0.05, t-critical = 1.96.

Evolutionary Computation Volume 21, Number 2 355



R. Zamani

The second point worth mentioning is that if the best solution among all the 16
combinations of (δ, η) were selected for each of the 2,040 benchmark instances, then
CPM dev% results produced by the CONE would significantly improve from 10.64,
10.03, and 31.65; to 10.49, 9.81, and 30.73 for the sets j60, j90, and j120, respectively.
In this case, the computational times would increase from 2, 4, and 5; to 32, 64, and
80 s, for the sets j60, j90, and j120, respectively, indicating a 16 times increase in the
computational time for each set.

5 Conclusion

The effectiveness of metaheuristics in general is based on the features of high depth
and mobility, and the successful methods presented for the RCPSP can be primarily
characterized by their capability in providing these two features. The CONE has per-
formed successfully on the benchmark instances of the PSPLIB and this success can be
accredited to these two features.

With respect to mobility, the CONE performs a rapid search, through altering the
locations of every three activities as well as swapping the locations of every two possible
partitions. Changing the locations of possible partitions is similar to the results of
crossover operations in genetic algorithms, with a difference that here both partitions
are selected from the same genome and change their locations. The other difference
is that all the swaps are performed systematically, whereas crossover operations are
performed randomly.

With respect to high depth, the CONE performs crossover operations on random
pairs of high quality solutions. This increases the quality of regions in which the search is
conducted. A dynamic pool, along with one-point and two-point crossover operations,
facilitates achieving high depth in such promising regions. The aim of crossover oper-
ations is to exploit the knowledge existing in the set of diverse solutions, which were
originally local optimal for both orthogonal neighborhood schemes. This can further
explore the promising areas of the search space as well.

The capabilities of the CONE can be extended in future works toward two different
directions. These directions include employing automatic parameter setting and using
particle swarm optimization in combining high quality solutions kept in the pool. These
two directions can be described as follows.

The values of the parameters such as population size (η) and utilization ratio
threshold (δ), can influence the performance of the CONE both in terms of the quality
of solutions and computation time. Hence, finding suitable problem-dependent values
for them can play a key role in the performance of the CONE. Taking this into consid-
eration, the CONE can be equipped with an additional mechanism that learns the best
values of the parameters for any specific problem instance.

For instance, the current genetic algorithm can be extended to represent each of the
parameters used as a gene and measure the fitness of each chromosome by evaluating
the solution obtained via the associated control parameters. In this way, by comparing
the quality of solutions obtained, the revised CONE will learn how to improve its own
performance.

The second direction is aimed at improving solution quality at the cost of insignifi-
cant computation time through employing the technique of particle swarm optimization
(Engelbrecht, 2005). Because of the diversity and high quality of the solutions kept in the
initial pool, these solutions can be considered to be proper choices for the application
of particle swarm optimization.

356 Evolutionary Computation Volume 21, Number 2



RCPSP: Crossover in Orthogonal Neighborhoods

By using particle swarm optimization, one high quality schedule generated by
the CONE can be flown toward the other schedule through multidimensional search
space, and on its way can produce a variety of high quality schedules. In this proposed
platform, the flight of one schedule toward the other is aimed at increasing mobility
(Zhang et al., 2005), and is intended to improve solution quality. In the proposed
platform, a learning mechanism similar to what presented in Zamani and Lau (2010)
can be activated for adjusting the operations involved.

References

Bacardit, J., and Krasnogor, N. (2009). Performance and efficiency of memetic Pittsburgh learning
classifier systems. Evolutionary Computation, 17(3):307–342.

Brucker, P., Knust, S., Schoo, A., and Thiele, O. (1998). A branch and bound algorithm for the
resource-constrained project scheduling problem. European Journal of Operational Research,
107:272–288.

Chen, W., Shi, Y., Teng, H., Lan, X., and Hu, L. (2010). An efficient hybrid algorithm for resource-
constrained project scheduling. Information Sciences, 180(6):1031–1039.

Cho, J., and Kim, Y. D. (1997). A simulated annealing algorithm for resource constrained project
scheduling problems. Journal of the Operational Research Society, 48:736–744.

De Reyck, B., and Herroelen, W. (1998). A branch-and-bound procedure for the resource-
constrained project scheduling problem with generalised precedence relations. European
Journal of Operational Research, 111:152–174.

Deb, K., and Sinha, A. (2010). An efficient and accurate solution methodology for bilevel multi-
objective programming problems using a hybrid evolutionary-local-search algorithm. Evo-
lutionary Computation, 18(3):403–449.

Debels, D., De Reyck, B., Leus, R., and Vanhoucke, M. (2006). A hybrid scatter search/
electromagnetism meta-heuristic for project scheduling. European Journal of Operational
Research, 169(2):638–653.

Debels, D., and Vanhoucke, M. (2007). A decomposition-based genetic algorithm for the resource-
constrained project-scheduling problem. Operations Research, 55(3):457.

Dechter, R. (2003). Constraint processing. San Mateo, CA: Morgan Kaufmann.

Demassey, S., Artigues, C., and Michelon, P. (2005). Constraint-propagation-based cutting planes:
An application to the resource-constrained project scheduling problem. INFORMS Journal
on Computing, 17(1):52–65.

Demeulemeester, E., and Herroelen, W. (1992). A branch-and-bound procedure for multiple
resource-constrained project scheduling problem. Management Science, 38:1803–1818.

Demeulemeester, E., and Herroelen, W. (1997). A new benchmark results for the resource-
constrained project scheduling problem. Management Science, 43:1485–1492.

Dorigo, M., and Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–
66.

Dorndorf, U., Pesch, E., and Phan-Huy, T. (2000). A branch-and-bound algorithm for the resource-
constrained project scheduling problem. Mathematical Methods of Operations Research, 52:413–
439.

Engelbrecht, A. (2005). Fundamentals of computational swarm intelligence. New York: Wiley.

Evolutionary Computation Volume 21, Number 2 357



R. Zamani

Farahmand, A. M., Ahmadabadi, M. N., Lucas, C., and Araabi, B. N. (2010). Interaction of culture-
based learning and cooperative co-evolution and its application to automatic behavior-based
system design. IEEE Transactions on Evolutionary Computation, 14(1):23–57.

Feo, T. A., and Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal
of Global Optimization, 6(2):109–133.

Fleszar, K., and Hindi, K. S. (2004). Solving the resource-constrained project scheduling problem
by a variable neighbourhood search. European Journal of Operational Research, 155(2):402–
413.

Fukunaga, A. S. (2008). Automated discovery of local search heuristics for satisfiability testing.
Evolutionary Computation, 16(1):31–61.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Com-
puters and Operations Research, 13(5):533–549.

Glover, F. (1994). Genetic algorithms and scatter search: Unsuspected potentials. Statistics and
Computing, 4(2):131–140.

Glover, F. (1998). A template for scatter search and path relinking. Lecture notes in computer science,
Vol. 1363 (pp. 13–54). Berlin: Springer-Verlag.

Glover, F., Kelly, J. P., and Laguna, M. (1995). Genetic algorithms and tabu search: Hybrids for
optimization. Computers and Operations Research, 22(1):111–134.

Hansen, P., Mladenović, N., and Perez-Britos, D. (2001). Variable neighborhood decomposition
search. Journal of Heuristics, 7(4):335–350.

Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project scheduling.
Naval Research Logistics, 45:733–750.

Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under resource
constraints. Naval Research Logistics, 49:433–448.

Hoos, H. H., and Stutzle, T. (2005). Stochastic local search foundations and applications. San Mateo,
CA: Morgan Kaufmann.

Hu, H. (2008). Orthogonal neighborhood preserving discriminant analysis for face recognition.
Pattern Recognition, 41(6):2045–2054.

Hu, X. M., Zhang, J., and Li, Y. (2008). Orthogonal methods based ant colony search for solv-
ing continuous optimization problems. Journal of Computer Science and Technology, 23(1):2–
18.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220:671–680.

Kochetov, Y. A., and Stolyar, A. A. (2003). Evolutionary local search with variable neighbourhood
for the resource constrained scheduling problem. Proceedings of the 3rd International Workshop
of Computer Science and Information Technologies.

Kolisch, R. (1995). Project scheduling under resource constraints: Efficient heuristics for several problem
classes. Heidelberg: Physica.

Kolisch, R. (1996a). Efficient priority rules for the resource-constrained project scheduling prob-
lem. Journal of Operations Management, 14(3):179–192.

Kolisch, R. (1996b). Serial and parallel resource-constrained project scheduling methods revisited:
Theory and computation. European Journal of Operational Research, 90:320–333.

Kolisch, R., and Drexl, A. (1996). Adaptive search for solving hard project scheduling problems.
Naval Research Logistics, 43:23–40.

358 Evolutionary Computation Volume 21, Number 2



RCPSP: Crossover in Orthogonal Neighborhoods

Kolisch, R., and Hartmann, S. (2006). Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European Journal of Operational Research,
174(1):23–37.

Kolisch, R., and Padman, R. (2001). An integrated survey of deterministic project scheduling.
Omega: The International Journal of Management Science, 29:249–272.

Kolisch, R., and Sprecher, A. (1996). PSPLIB; A project scheduling library. European Journal of
Operational Research, 96:205–216.

Li, K., and Willis, R. (1992). An iterative scheduling technique for resource-constrained project
scheduling. European Journal of Operational Research, 56:370–379.

Lin, S., and Kernighan, B. (1973). An effective heuristic algorithm for the traveling salesman
problem. Operations Research, 21:443–452.

Lourenço, H., Martin, O., and Stützle, T. (2003). Iterated local search. In F. Glover (Ed.), Handbook
of Metaheuristics (pp. 320–353). Dordrecht, The Netherlands: Kluwer.

Marti, R., Laguna, M., and Glover, F. (2006). Principles of scatter search. European Journal of
Operational Research, 169(2):359–372.

Mendes, J. J. M., Gonçalves, J. F., and Resende, M. G. C. (2009). A random key based genetic
algorithm for the resource constrained project scheduling problem. Computers and Operations
Research, 36(1):92–109.

Mendes, S. P., Molina, G., Vega-Rodrı́guez, M. A., Gómez-Pulido, J. A., Sáez, Y., Miranda, G.,
Segura, C., Alba, E., Isasi, P., León, C., and Sanchez-Perez, J. M. (2009). Benchmarking a
wide spectrum of metaheuristic techniques for the radio network design problem. IEEE
Transactions on Evolutionary Computation, 13(5):1133–1150.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., and Bianco, L. (1998). An exact algorithm for the
resource-constrained project scheduling problem based on a new mathematical formulation.
Management Science, 44:714–729.

Mobini, M., Rabbani, M., Amalnik, M. S., Razmi, J., and Rahimi-Vahed, A. R. (2009). Using an
enhanced scatter search algorithm for a resource-constrained project scheduling problem.
Soft Computing—A Fusion of Foundations, Methodologies and Applications, 13(6):597–610.

Molina, D., Lozano, M., Garcı́a-Martı́nez, C., and Herrera, F. (2010). Memetic algorithms for
continuous optimisation based on local search chains. Evolutionary Computation, 18(1):27–
63.

Mori, M., and Tseng, C. (1997). A genetic algorithm for multi-mode resource constrained project
scheduling problem. European Journal of Operational Research, 100:134–141.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report, 826:1989.

Nazareth, T., Verma, S., Bhattacharya, S., and Bagchi, A. (1999). The multiple resource constrained
project scheduling problem: A breadth-first approach. European Journal of Operational Re-
search, 112(2):347–366.

Özdamar, L., and Ulusoy, G. (1995). A survey on the resource-constrained project scheduling
problem. IIIE Transactions, 27:574–586.

Palpant, M., Artigues, C., and Michelon, P. (2004). LSSPER: Solving the resource-constrained
project scheduling problem with large neighbourhood search. Annals of Operations Research,
131(1):237–257.

Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory
requirement. Management Science, 46:710–723.

Evolutionary Computation Volume 21, Number 2 359



R. Zamani

Sprecher, A. (2002). Network decomposition techniques for resource-constrained project schedul-
ing. Operational Research Society, 53:405–414.

Tormos, P., and Lova, A. (2001). A competitive heuristic solution technique for resource-
constrained project scheduling. Annals of Operations Research, 102(1):65–81.

Valls, V., Ballestin, F., and Quintanilla, S. (2004). A population-based approach to the resource-
constrained project scheduling problem. Annals of Operations Research, 131(1):305–324.

Valls, V., Ballestin, F., and Quintanilla, S. (2005). Justification and RCPSP: A technique that pays.
European Journal of Operational Research, 165(2):375–386.

Valls, V., Ballestin, F., and Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-
constrained project scheduling problem. European Journal of Operational Research, 185(2):495–
508.

Valls, V., Quintanilla, S., and Ballestin, F. (2003). Resource-constrained project scheduling: A
critical activity reordering heuristic. European Journal of Operational Research, 149(2):282–301.

Voudouris, C., and Tsang, E. P. K. (2003). Guided local search. In F. Glover (Ed.), Handbook of
Metaheuristics (pp. 185–218). Dordrecht, The Netherlands: Kluwer.

Wanner, E. F., Guimarães, F. G., Takahashi, R. H. C., and Fleming, P. J. (2008). Local search with
quadratic approximations into memetic algorithms for optimization with multiple criteria.
Evolutionary Computation, 16(2):185–224.

Zamani, R. (2001). A high-performance exact method for the resource-constrained project schedul-
ing problem. Computers and Operations Research, 28(14):1387–1401.

Zamani, R. (2004). An efficient time-windowing procedure for scheduling projects under multiple
resource constraints. OR Spectrum, 26(3):423–440.

Zamani, R. (2010). An accelerating two-layer anchor search with application to the resource-
constrained project scheduling problem. IEEE Transactions on Evolutionary Computation,
14(6):975–984.

Zamani, R. (2011). A hybrid decomposition procedure for scheduling projects under multiple
resource constraints. Operational Research, 11(1):93–111.

Zamani, R., and Lau, S. K. (2010). Embedding learning capability in Lagrangean relaxation: An
application to the travelling salesman problem. European Journal of Operational Research,
201(1):82–88.

Zhang, H., Li, X., Li, H., and Huang, F. (2005). Particle swarm optimization-based schemes for
resource-constrained project scheduling. Automation in Construction, 14(3):393–404.

360 Evolutionary Computation Volume 21, Number 2


	Integrating iterative crossover capability in orthogonal neighborhoods for scheduling resource-constrained projects
	Recommended Citation

	Integrating iterative crossover capability in orthogonal neighborhoods for scheduling resource-constrained projects
	Abstract
	Keywords
	Disciplines
	Publication Details

	EVCO_a_00085-Zamani_LR

