98 research outputs found
Electron cyclotron resonance near the axis of the gas-dynamic trap
Propagation of an extraordinary electromagnetic wave in the vicinity of
electron cyclotron resonance surface in an open linear trap is studied
analytically, taking into account inhomogeneity of the magnetic field in
paraxial approximation. Ray trajectories are derived from a reduced dispersion
equation that makes it possible to avoid the difficulty associated with a
transition from large propagation angles to the case of strictly longitudinal
propagation. Our approach is based on the theory, originally developed by the
Zvonkov and Timofeev [1], who used the paraxial approximation for the magnetic
field strength, but did not consider the slope of the magnetic field lines,
which led to considerable error, as has been recently noted by Gospodchikov and
Smolyakova [2]. We have found ray trajectories in analytic form and
demonstrated that the inhomogeneity of both the magnetic field strength and the
field direction can qualitatively change the picture of wave propagation and
significantly affect the efficiency of electron cyclotron heating of a plasma
in a linear magnetic trap. Analysis of the ray trajectories has revealed a
criterion for the resonance point on the axis of the trap to be an attractor
for the ray trajectories. It is also shown that a family of ray trajectories
can still reach the resonance point on the axis if the latter generally repels
the ray trajectories.
As an example, results of general theory are applied to the electron
cyclotron resonance heating experiment which is under preparation on the Gas
Dynamic Trap in the Budker Institute of Nuclear Physics [3]
New Insights into the Plateau-Insulator Transition in the Quantum Hall Regime
We have measured the quantum critical behavior of the plateau-insulator (PI)
transition in a low-mobility InGaAs/GaAs quantum well. The longitudinal
resistivity measured for two different values of the electron density follows
an exponential law, from which we extract critical exponents kappa = 0.54 and
0.58, in good agreement with the value (kappa = 0.57) previously obtained for
an InGaAs/InP heterostructure. This provides evidence for a non-Fermi liquid
critical exponent. By reversing the direction of the magnetic field we find
that the averaged Hall resistance remains quantized at the plateau value h/e^2
through the PI transition. From the deviations of the Hall resistance from the
quantized value, we obtain the corrections to scaling.Comment: accepted proceedings of EP2DS-15 (to be published in Physica E
Renormalization of hole-hole interaction at decreasing Drude conductivity
The diffusion contribution of the hole-hole interaction to the conductivity
is analyzed in gated GaAs/InGaAs/GaAs heterostructures. We show
that the change of the interaction correction to the conductivity with the
decreasing Drude conductivity results both from the compensation of the singlet
and triplet channels and from the arising prefactor in the
conventional expression for the interaction correction.Comment: 6 pages, 5 figure
Quantum corrections to conductivity: from weak to strong localization
Results of detailed investigations of the conductivity and Hall effect in
gated single quantum well GaAs/InGaAs/GaAs heterostructures with
two-dimensional electron gas are presented. A successive analysis of the data
has shown that the conductivity is diffusive for and behaves like
diffusive one for down to the temperature T=0.4 K. It has been
therewith found that the quantum corrections are not small at low temperature
when . They are close in magnitude to the Drude conductivity so
that the conductivity becomes significantly less than (the
minimal value achieved in our experiment is about at and K). We conclude that the
temperature and magnetic field dependences of conductivity in whole
range are due to changes of quantum corrections.Comment: RevTex 4.0, 10 figures, 7 two-column page
Structural and transport properties of GaAs/delta<Mn>/GaAs/InxGa1-xAs/GaAs quantum wells
We report results of investigations of structural and transport properties of
GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn
layer, separated from the QW by a 3 nm thick spacer. The structure has hole
mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher
than in known ferromagnetic two-dimensional structures. The analysis of the
electro-physical properties of these systems is based on detailed study of
their structure by means of high-resolution X-ray diffractometry and
glancing-incidence reflection, which allow us to restore the depth profiles of
structural characteristics of the QWs and thin Mn containing layers. These
investigations show absence of Mn atoms inside the QWs. The quality of the
structures was also characterized by photoluminescence spectra from the QWs.
Transport properties reveal features inherent to ferromagnetic systems: a
specific maximum in the temperature dependence of the resistance and the
anomalous Hall effect (AHE) observed in samples with both "metallic" and
activated types of conductivity up to ~100 K. AHE is most pronounced in the
temperature range where the resistance maximum is observed, and decreases with
decreasing temperature. The results are discussed in terms of interaction of
2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations
related to random distribution of Mn atoms. The AHE values are compared with
calculations taking into account its "intrinsic" mechanism in ferromagnetic
systems.Comment: 15 pages, 9 figure
Acceleration of the precession frequency for optically-oriented electron spins in ferromagnetic/semiconductor hybrids
Time-resolved Kerr rotation measurements were performed in InGaAs/GaAs
quantum wells nearby a doped Mn delta layer. Our magneto-optical results show a
typical time evolution of the optically-oriented electron spin in the quantum
well. Surprisingly, this is strongly affected by the Mn spins, resulting in an
increase of the spin precession frequency in time. This increase is attributed
to the variation in the effective magnetic field induced by the dynamical
relaxation of the Mn spins. Two processes are observed during electron spin
precession: a quasi-instantaneous alignment of the Mn spins with photo-excited
holes, followed by a slow alignment of Mn spins with the external transverse
magnetic field. The first process leads to an equilibrium state imprinted in
the initial precession frequency, which depends on pump power, while the second
process promotes a linear frequency increase, with acceleration depending on
temperature and external magnetic field. This observation yields new
information about exchange process dynamics and on the possibility of
constructing spin memories, which can rapidly respond to light while retaining
information for a longer period.Comment: 7 pages, 5 figure
Electron-electron interaction at decreasing
The contribution of the electron-electron interaction to conductivity is
analyzed step by step in gated GaAs/InGaAs/GaAs heterostructures with different
starting disorder. We demonstrate that the diffusion theory works down to , where is the Fermi quasimomentum, is the mean free
paths. It is shown that the e-e interaction gives smaller contribution to the
conductivity than the interference independent of the starting disorder and its
role rapidly decreases with decrease.Comment: 5 pages, 6 figure
Successful experience of treatment of a patient with generalized non-GCB- DLBCL using the R-mNHL-BFM-90 protocol with lenalidomide: case report and review of literature
Diffuse large B-cell lymphoma is categorized by gene expression profiling into germinal center (GCB) and activated B-cell (ABC) subtype, also referred to as non-germinal center B-cell (non-GCB) by immunohistochemistry. ABC DLBCL is characterized by NF-κB pathway activation and high expression of IRF4/MUM1, a key transcription factor in B cell differentiation. Patients with ABC DLBCL have a significantly worse outcome when treated with standard chemotherapy (R-CHOP). Lenalidomide have shown activity in the ABC-DLBCL in combination with R-CHOP. But about 40% of patients remain resistant. We present the experience of treatment of a patient with generalized non-GCB-DLBCL using the intensive protocol R-mNHL-BFM-90 with lenalidomide
- …