4,433 research outputs found
Recommended from our members
Assessment of sexual difficulties associated with multi-modal treatment for cervical or endometrial cancer: A systematic review of measurement instruments
Background: Practitioners and researchers require an outcome measure that accurately identifies the range of common treatment-induced changes in sexual function and well-being experienced by women after cervical or endometrial cancer. This systematic review critically appraised the measurement properties and clinical utility of instruments validated for the measurement of female sexual dysfunction (FSD) in this clinical population.
Methods: A bibliographic database search for questionnaire development or validation papers was completed and methodological quality and measurement properties of selected studies rated using the Consensus-based Standards for the selection of health Measurement Instrument (COSMIN) checklist.
Results: 738 articles were screened, 13 articles retrieved for full text assessment and 7 studies excluded, resulting in evaluation of 6 papers; 2 QoL and 4 female sexual morbidity measures.
Five of the six instruments omitted one or more dimension of female sexual function and only one instrument explicitly measured distress associated with sexual changes as per DSM V (APA 2013) diagnostic criteria.
None of the papers reported measurement error, responsiveness data was available for only two instruments, three papers failed to report on criterion validity, and test-retest reliability reporting was inconsistent. Heterosexual penile-vaginal intercourse remains the dominant sexual activity focus for sexual morbidity PROMS terminology and instruments lack explicit reference to solo or non-coital sexual expression or validation in a non-heterosexual sample. Four out of six instruments included mediating treatment or illness items such as vaginal changes, menopause or altered body image.
Conclusions: Findings suggest that the Female Sexual Function Index (FSFI) remains the most robust sexual morbidity outcome measure, for research or clinical use, in sexually active women treated for cervical or endometrial cancer
Ferreting out the Fluffy Bunnies: Entanglement constrained by Generalized superselection rules
Entanglement is a resource central to quantum information (QI). In
particular, entanglement shared between two distant parties allows them to do
certain tasks that would otherwise be impossible. In this context, we study the
effect on the available entanglement of physical restrictions on the local
operations that can be performed by the two parties. We enforce these physical
restrictions by generalized superselection rules (SSRs), which we define to be
associated with a given group of physical transformations. Specifically the
generalized SSR is that the local operations must be covariant with respect to
that group. Then we operationally define the entanglement constrained by a SSR,
and show that it may be far below that expected on the basis of a naive (or
``fluffy bunny'') calculation. We consider two examples. The first is a
particle number SSR. Using this we show that for a two-mode BEC (with Alice
owning mode and Bob mode ), the useful entanglement shared by Alice and
Bob is identically zero. The second, a SSR associated with the symmetric group,
is applicable to ensemble QI processing such as in liquid-NMR. We prove that
even for an ensemble comprising many pairs of qubits, with each pair described
by a pure Bell state, the entanglement per pair constrained by this SSR goes to
zero for a large ensemble.Comment: 8 pages, proceedings paper for an invited talk at 16th International
Conference on Laser Spectroscopy (2003
Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis
We investigate schemes for Hamiltonian parameter estimation of a two-level
system using repeated measurements in a fixed basis. The simplest (Fourier
based) schemes yield an estimate with a mean square error (MSE) that decreases
at best as a power law ~N^{-2} in the number of measurements N. By contrast, we
present numerical simulations indicating that an adaptive Bayesian algorithm,
where the time between measurements can be adjusted based on prior measurement
results, yields a MSE which appears to scale close to \exp(-0.3 N). That is,
measurements in a single fixed basis are sufficient to achieve exponential
scaling in N.Comment: 5 pages, 3 figures, 1 table. Published versio
Quantum phenomena modelled by interactions between many classical worlds
We investigate whether quantum theory can be understood as the continuum
limit of a mechanical theory, in which there is a huge, but finite, number of
classical 'worlds', and quantum effects arise solely from a universal
interaction between these worlds, without reference to any wave function. Here
a `world' means an entire universe with well-defined properties, determined by
the classical configuration of its particles and fields. In our approach each
world evolves deterministically; probabilities arise due to ignorance as to
which world a given observer occupies; and we argue that in the limit of
infinitely many worlds the wave function can be recovered (as a secondary
object) from the motion of these worlds. We introduce a simple model of such a
'many interacting worlds' approach and show that it can reproduce some generic
quantum phenomena---such as Ehrenfest's theorem, wavepacket spreading, barrier
tunneling and zero point energy---as a direct consequence of mutual repulsion
between worlds. Finally, we perform numerical simulations using our approach.
We demonstrate, first, that it can be used to calculate quantum ground states,
and second, that it is capable of reproducing, at least qualitatively, the
double-slit interference phenomenon.Comment: Published version (including further discussion of interpretation and
quantum limit
Quantum optical waveform conversion
Currently proposed architectures for long-distance quantum communication rely
on networks of quantum processors connected by optical communications channels
[1,2]. The key resource for such networks is the entanglement of matter-based
quantum systems with quantum optical fields for information transmission. The
optical interaction bandwidth of these material systems is a tiny fraction of
that available for optical communication, and the temporal shape of the quantum
optical output pulse is often poorly suited for long-distance transmission.
Here we demonstrate that nonlinear mixing of a quantum light pulse with a
spectrally tailored classical field can compress the quantum pulse by more than
a factor of 100 and flexibly reshape its temporal waveform, while preserving
all quantum properties, including entanglement. Waveform conversion can be used
with heralded arrays of quantum light emitters to enable quantum communication
at the full data rate of optical telecommunications.Comment: submitte
A matched expansion approach to practical self-force calculations
We discuss a practical method to compute the self-force on a particle moving
through a curved spacetime. This method involves two expansions to calculate
the self-force, one arising from the particle's immediate past and the other
from the more distant past. The expansion in the immediate past is a covariant
Taylor series and can be carried out for all geometries. The more distant
expansion is a mode sum, and may be carried out in those cases where the wave
equation for the field mediating the self-force admits a mode expansion of the
solution. In particular, this method can be used to calculate the gravitational
self-force for a particle of mass mu orbiting a black hole of mass M to order
mu^2, provided mu/M << 1. We discuss how to use these two expansions to
construct a full self-force, and in particular investigate criteria for
matching the two expansions. As with all methods of computing self-forces for
particles moving in black hole spacetimes, one encounters considerable
technical difficulty in applying this method; nevertheless, it appears that the
convergence of each series is good enough that a practical implementation may
be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue
of Classical and Quantum Gravit
Adaptive single-shot phase measurements: The full quantum theory
The phase of a single-mode field can be measured in a single-shot measurement
by interfering the field with an effectively classical local oscillator of
known phase. The standard technique is to have the local oscillator detuned
from the system (heterodyne detection) so that it is sometimes in phase and
sometimes in quadrature with the system over the course of the measurement.
This enables both quadratures of the system to be measured, from which the
phase can be estimated. One of us [H.M. Wiseman, Phys. Rev. Lett. 75, 4587
(1995)] has shown recently that it is possible to make a much better estimate
of the phase by using an adaptive technique in which a resonant local
oscillator has its phase adjusted by a feedback loop during the single-shot
measurement. In Ref.~[H.M. Wiseman and R.B. Killip, Phys. Rev. A 56, 944] we
presented a semiclassical analysis of a particular adaptive scheme, which
yielded asymptotic results for the phase variance of strong fields. In this
paper we present an exact quantum mechanical treatment. This is necessary for
calculating the phase variance for fields with small photon numbers, and also
for considering figures of merit other than the phase variance. Our results
show that an adaptive scheme is always superior to heterodyne detection as far
as the variance is concerned. However the tails of the probability distribution
are surprisingly high for this adaptive measurement, so that it does not always
result in a smaller probability of error in phase-based optical communication.Comment: 17 pages, LaTeX, 8 figures (concatenated), Submitted to Phys. Rev.
Adiabatic Elimination in Compound Quantum Systems with Feedback
Feedback in compound quantum systems is effected by using the output from one
sub-system (``the system'') to control the evolution of a second sub-system
(``the ancilla'') which is reversibly coupled to the system. In the limit where
the ancilla responds to fluctuations on a much shorter time scale than does the
system, we show that it can be adiabatically eliminated, yielding a master
equation for the system alone. This is very significant as it decreases the
necessary basis size for numerical simulation and allows the effect of the
ancilla to be understood more easily. We consider two types of ancilla: a
two-level ancilla (e.g. a two-level atom) and an infinite-level ancilla (e.g.
an optical mode). For each, we consider two forms of feedback: coherent (for
which a quantum mechanical description of the feedback loop is required) and
incoherent (for which a classical description is sufficient). We test the
master equations we obtain using numerical simulation of the full dynamics of
the compound system. For the system (a parametric oscillator) and feedback
(intensity-dependent detuning) we choose, good agreement is found in the limit
of heavy damping of the ancilla. We discuss the relation of our work to
previous work on feedback in compound quantum systems, and also to previous
work on adiabatic elimination in general.Comment: 18 pages, 12 figures including two subplots as jpeg attachment
- …