4 research outputs found
Quantification of endogenous levels of IAA, IAAsp and IBA in micro-propagated shoots of hybrid chestnut pre-treated with IBA
Endogenous levels of indole-3-acetic acid (IAA),
indole-3-acetylaspartic acid (IAAsp) and indole-3-butyric
acid (IBA) were measured during the first 8 d of in vitro
rooting of rootstock from the chestnut âM3â hybrid by high
performance liquid chromatography (HPLC). Rooting was
induced either by dipping the basal ends of the shoots into a
4.92-mM IBA solution for 1 min or by sub-culturing the
shoots on solid rooting medium supplemented with 14.8-
ÎŒM IBA for 5 d. For root development, the induced shoots
were transferred to auxin-free solid medium. Auxins were
measured in the apical and basal parts of the shoots by
means of HPLC. Endogenous levels of IAA and IAAsp
were found to be greater in IBA-treated shoots than in
control shoots. In extracts of the basal parts of the shoots,
the concentration of free IAA showed a significant peak 2 d
after either root inductive method and a subsequent gradual
decrease for the remainder of the time course. The
concentration of IAAsp peaked at day 6 in extracts of the
basal parts of shoots induced with 14.8-ÎŒM IBA for 5 d,
whereas shoots induced by dipping showed an initial
increase until day 2 and then remained stable. In extracts
from basal shoot portions induced by dipping, IBA
concentration showed a transient peak at day 1 and a plateau between day 2 and 4, in contrast to the profile of
shoots induced on auxin-containing medium, which
showed a significant reduction between 4 and 6 d after
transferred to auxin-free medium. All quantified auxins
remained at a relatively low level, virtually constant, in
extracts from apical shoot portions, as well as in extracts
from control non-rooting shoots. In conclusion, the natural
auxin IAA is the signal responsible for root induction,
although it is driven by exogenous IBA independently of
the adding conditions
Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk
This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species.
In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed