20,972 research outputs found

    Ouabain-induced cytoplasmic vesicles and their role in cell volume maintenance

    Get PDF
    Cellular swelling is controlled by an active mechanism of cell volume regulation driven by a Na+/K+-dependent ATPase and by aquaporins which translocate water along the osmotic gradient. Na+/K+-pump may be blocked by ouabain, a digitalic derivative, by inhibition of ATP, or by drastic ion alterations of extracellular fluid. However, it has been observed that some tissues are still able to control their volume despite the presence of ouabain, suggesting the existence of other mechanisms of cell volume control. In 1977, by correlating electron microscopy observation with ion and water composition of liver slices incubated in differentmetabolic conditions in the presence or absence of ouabain, we observed that hepatocytes were able to control their volume extruding water and recovering ion composition in the presence of ouabain. In particular, hepatocytes were able to sequester ions and water in intracellular vesicles and then secrete themat the bile canaliculus pole.We named this “vesicularmechanismof cell volume control.” Afterward, thismechanism has been confirmed by us and other laboratories in several mammalian tissues.This review summarizes evidences regarding this mechanism, problems that are still pending, and questions that need to be answered. Finally, we shortly review the importance of cell volume control in some human pathological conditions

    Universality and Scaling at the Onset of Quantum Black Hole Formation

    Full text link
    In certain two-dimensional models, collapsing matter forms a black hole if and only if the incoming energy flux exceeds the Hawking radiation rate. Near the critical threshold, the black hole mass is given by a universal formula in terms of the distance from criticality, and there exists a scaling solution describing the formation and evaporation of an arbitrarily small black hole.Comment: 9 pages, 3 figures (uuencoded

    Serendipity Face and Edge VEM Spaces

    Full text link
    We extend the basic idea of Serendipity Virtual Elements from the previous case (by the same authors) of nodal (H1H^1-conforming) elements, to a more general framework. Then we apply the general strategy to the case of H(div)H(div) and H(curl)H(curl) conforming Virtual Element Methods, in two and three dimensions

    Serendipity Nodal VEM spaces

    Full text link
    We introduce a new variant of Nodal Virtual Element spaces that mimics the "Serendipity Finite Element Methods" (whose most popular example is the 8-node quadrilateral) and allows to reduce (often in a significant way) the number of internal degrees of freedom. When applied to the faces of a three-dimensional decomposition, this allows a reduction in the number of face degrees of freedom: an improvement that cannot be achieved by a simple static condensation. On triangular and tetrahedral decompositions the new elements (contrary to the original VEMs) reduce exactly to the classical Lagrange FEM. On quadrilaterals and hexahedra the new elements are quite similar (and have the same amount of degrees of freedom) to the Serendipity Finite Elements, but are much more robust with respect to element distortions. On more general polytopes the Serendipity VEMs are the natural (and simple) generalization of the simplicial case

    Classical resolution of singularities in dilaton cosmologies

    Get PDF
    For models of dilaton-gravity with a possible exponential potential, such as the tensor-scalar sector of IIA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to points at which a trajectory meets the Milne horizon, but the trajectories can be smoothly continued through the horizon to an instanton solution of the Euclidean theory. We find some exact cosmology/instanton solutions that lift to black holes in one higher dimension. For one such solution, the singularities of a big crunch to big bang transition mediated by an instanton phase lift to the black hole and cosmological horizons of de Sitter Schwarzschild spacetimes.Comment: 24 pages, 2 figure

    ASPAL. Proof of soundness and completeness

    Get PDF
    We provide here a brief introduction and proof of soundness and completeness of the ILP system ASPAL. This document is in support of our ICLP 2011 submission, for the reviewers' bene ts

    Cosmological D-instantons and Cyclic Universes

    Get PDF
    For models of gravity coupled to hyperbolic sigma models, such as the metric-scalar sector of IIB supergravity, we show how smooth trajectories in the `augmented target space' connect FLRW cosmologies to non-extremal D-instantons through a cosmological singularity. In particular, we find closed cyclic universes that undergo an endless sequence of big-bang to big-crunch cycles separated by instanton `phases'. We also find `big-bounce' universes in which a collapsing closed universe bounces off its cosmological singularity to become an open expanding universe.Comment: 21 pages, 4 figures. v2: minor change
    • 

    corecore