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Abstract

For models of gravity coupled to hyperbolic sigma models, such as the
metric-scalar sector of IIB supergravity, we show how smooth trajectories
in the ‘augmented target space’ connect FLRW cosmologies to non-extremal
D-instantons through a cosmological singularity. In particular, we find closed
cyclic universes that undergo an endless sequence of big-bang to big-crunch
cycles separated by instanton ‘phases’. We also find ‘big-bounce’ universes in
which a collapsing closed universe bounces off its cosmological singularity to
become an open expanding universe.

PACS numbers: 98.80.—k, 04.60.—m

1. Introduction

Homogeneous and isotropic cosmological solutions of gravity coupled to N scalar fields can
be viewed as trajectories in a Lorentzian-signature ‘augmented target space’ of dimension
N + 1. If the scalar field target space is the hyperbolic space Hy, it can happen that the
augmented target space is a Milne universe, and that cosmological singularities correspond
to points on trajectories at which the Milne horizon is crossed [1]. In the models considered
in [1], cosmological trajectories were geodesics, and hence straight lines in a Milne patch
of Minkowski ‘spacetime’®. In such models the Milne horizon is typically crossed twice,
corresponding either to expansion from a big-bang singularity followed by contraction to a
big-crunch singularity, or to a big-bang/big-crunch transition through a region behind the
Milne horizon in which the scale factor is imaginary. As the trajectory through the horizon
is smooth in Minkowski coordinates, this construction strongly suggests an interpretation in

3 See [2] for a related observation in the context of flat k = 0 cosmologies of three-dimensional gravity. It was

shown in [3] that cosmological trajectories are always geodesics in an appropriate metric on the augmented target
space but it is only in rather special cases that this metric is the Milne metric on Minkowski spacetime.
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which a collapsing universe tunnels through a ‘forbidden’ region in field space to emerge as a
re-expanding universe [1].

The main aim of this paper is to provide further support for this idea by showing, in
a particular class of models, that the trajectory behind the Milne horizon corresponds to a
solution of the field equations of the Euclidean action; in other words, an instanton. Of course,
the general idea that a big-bang singularity might be resolved by a transition to a Euclidean
signature solution, or gravitational instanton, is not new. Here, however, we are not actually
resolving the singularity in the spacetime metric; we are instead re-interpreting it as a mere
coordinate singularity in a larger space in which the scalar fields are on the same footing as
the metric. The instanton solutions that we need for this re-interpretation are also different;
they are the ‘super-extremal’ D-instantons [4] that generalize the (extremal) D-instanton of
Euclidean IIB supergravity [5], hence our title. An amusing by-product of our analysis
is that for k¥ = 1 cosmologies in a certain subclass of models, these instanton—cosmology
transitions may link up to yield a cyclic universe; i.e. one that expands from a big bang to a big
crunch, passes through an instanton ‘phase’ to re-emerge as an expanding universe that again
recollapses to a big crunch, followed by a further instanton ‘phase’, ad infinitum. Another
subclass of models, which include IIB supergravity, allow ‘big-bounce’ universes that simply
bounce smoothly off the big-crunch singularity without the need for an instanton ‘phase’.

We shall simplify our task by taking N = 2 but we consider an arbitrary, but finite, radius
of the scalar field target space. We shall also keep arbitrary the spacetime dimension d. The
model to be considered here has zero scalar potential, so our starting point (in the conventions
of [4]) is the Lagrangian density

L= /edetg[R—1(0¢)* +1ee??(@x)], (1.1)
for d-metric g and scalar fields (¢, x). For ¢ = —1, the scalar fields parametrize a hyperbolic

space H, of radius 2/b. For d = 10 and b = 2 we then have a consistent truncation of IIB
supergravity; note that in this context, x is a pseudo-scalar so that a solution with non-zero
x breaks parity. For the same values of d and b the Lagrangian with € = 1 is the consistent
truncation of the Euclidean IIB supergravity shown in [5, 4] to admit D-instanton solutions.
Note that the scalar fields in this Euclidean action parametrize the Lorentzian-signature space
ad$,, so the Euclidean action is not positive definite, but can be made positive definite [6]
by dualization of x (followed by the usual ‘conformal rotation’ of Euclidean quantum gravity
[(7D).

The above Lagrangian density is thus a natural generalization to arbitrary spacetime
dimension and arbitrary target space radius of the metric-scalar sector of IIB supergravity,
or its Euclidean counterpart. As we shall soon see, cosmological trajectories of this model
correspond to motion in a Milne universe. It was observed in [1] that there is a special value
of the target space radius (and hence of b) for which the motion is geodesic. However, as
we show here, exact cosmological and instanton solutions can be found for any target space
radius.

2. Cosmologies and instantons

To investigate cosmological solutions of our model, or to find instanton solutions of its
Euclidean version, we make the ansatz

ds? = (e f)* dr* + /=D a3, p=0M), x=xH), (2.1
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where f is an arbitrary function of A, and

. d—1 29

The (d — 1)-metric dE,f is (at least locally) a maximally symmetric space of positive (k = 1),
negative (k = —1) or zero (k = 0) curvature. One can choose coordinates such that

dx? = (1 —krH)tdr? +72dQ7_,, (2.3)

where inz is an SO(d — 1)-invariant metric on the unit (d — 2)-sphere. This ansatz
constitutes a consistent reduction of the original degrees of freedom to a three-dimensional
subspace, the ‘augmented target space’, with coordinates (¢, ¢, x). The full equations of
motion reduce to a set of equations that can themselves be derived by variation of the time-
reparametrization invariant effective action

1 .
I=3 / dM{ [ (e@? — ed? + e x2) + 2k(d — 1)(d — 2) f ¥/}, (2.4)
where the overdot indicates differentiation with respect to A. For ¢ = —1 we can interpret A

as a time coordinate related to the time ¢ of FLRW cosmology in standard coordinates by
dr oc e* f da. (2.5)

For € = 1 the metric has Euclidean signature and we can interpret A as imaginary time.
Before proceeding, it is convenient to define new scalar field variables (¢, 6) by

e®/P? = eV cos?(0/2) — ee ¥ sin*(6/2),

(2.6)
ey = b7l +eeV)sing,
to get the new effective action
I = 1 /dx if*‘ b—zapz — eyt + l(e‘” +ee V)20% | +2k(d — 1)(d —2) fe?/®
2 b? 4 4 '
2.7

This is just a reparametrization of the target space but it has the advantage that the new
coordinates are globally valid. Introducing the new scale-factor variable n by

N’ =2y(d—1)e?/®, (2.8)
where

y = 1/(ba), (2.9)
we arrive at the action
I = l/dx if—l e(/m)? — ey + l(e"’ +ee V)% | + b—zkfnZV (2.10)

2 b? 4 4 ' '

We remark, for future reference, that the ansatz (2.1) leads to y = 2/3 for d = 10 IIB
supergravity.

Because of the time-reparametrization invariance, we are free to choose the function f;
each choice of f corresponds to some choice of time parameter. There are two choices that
are particularly convenient, and we now consider them in turn.



2638 E A Bergshoeff et al

2.1. The ‘Liouwville’ gauge

The simplest way to proceed for general b is to make the gauge choice

f =4/b%. (2.11)
From (2.10) one sees that the effective Lagrangian in this gauge is
L =1—ey? + 1 +eec™)202] + [e(i/n)? + kn*]. (2.12)

Apart from the constraint, the dynamics of the motion on the target space, which is manifestly
geodesic, is now separated from the dynamics of the scale factor, which is determined by a
equation of Liouville type; for this reason we will call this choice of gauge the ‘Liouville
gauge’.

As S1(2; R) is the isometry group of both H, (the target space of the Lorentzian action)
and ad S, (the target space of the Euclidean action), there is a conserved S/(2; R) ‘angular
momentum’ £#, and the geodesics are such that

Y’ —et(eV +ee V)20 =02 (2.13)
The constraint (f equation of motion) is
(/) = €% + ken? . (2.14)

We now present the solutions of the equations of motion of (2.12) subject to the constraints
(2.13) and (2.14), first for the target space fields and then for the scale factor.

2.1.1. Target space geodesics. Geodesics on the H, (¢ = —1) or ad S, (¢ = 1) target space
are solutions of the field equations of (2.12) for ¢ and 0 subject to (2.13) and can be classified
as follows, according to whether £ is positive, negative or zero:

e ¢2 > (. For € = 1 the solution is

2
sinhyr = 1+ i—; sinh[£(A — 0)]

2.15)
tan(6 — ) = :I:% tanh[£(A — Ag)],

for constants A, 6y and g_ (this being the integration constant for the super-extremal
D-instanton of [4]). For ¢ = —1 the solution is

2
coshyy = 1+ ‘;—; cosh[£(A — Ag)]

(2.16)
tan(6 — 6p) = i% coth[£(. — 2o)].

In the special case that g_ = 0 these solutions simplify, for either choice of the sign €, to
Y=L — X), 0 = 6y, (e = £1). 2.17)
e 2 < 0. In this case only € = 1 is possible, and the solution is

2
sinhy = + /(_q—zz) — Lsin[v/=€20. — 20)]

(2.18)
q-
tan(@ — 6) = :I:\/__E2 tan [\/ —02(x — AU)].
e (> = 0. The only solution for € = —1 in this case is the trivial one for which both v and
6 are constant. For € = 1 the solution is
sinhy = £q_ (& — Ap), tan(@ — 6p) = £q_ (A — o). (2.19)

It should be noted that, in each case, the & signs for ¥ and 8 can be chosen independently.
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2.1.2. The scale factor. 'We next turn to the constraint (2.14). Given £2, this determines 7 as
follows:

e 2 >0.
= 15" exp(£2Ly 1), (k = 0), (2.20)
2 e
L ke = 1), 2.21
1 sinh?(€y 1) ( ) ( )
2 e
. ke = —1), 2.22
" cosh®(£y \) ( ) ( )

for some constant 7. Note that all k = £1 trajectories are asymptotic to some k = 0
trajectory near n = 0, as expected since the o-model matter satisfies the strong energy
condition.

e ¢2 < 0. In this case, there is a solution only fork = ¢ = 1:

02
2y = k=¢ec=1). 2.23
sin? (y«/ —€2k) ( ‘ . 229

e (> = 0. In this case there is a solution only for ke > 0. If k = O then 7 is constant.
Otherwise

n? =1/(yr)?% (ke = 1). (2.24)

For € = k = 1 these solutions yield the super-extremal (€2 > 0), sub-extremal (¢> < 0)
and extremal (£2 = 0) D-instantons of [4]. For € = —1 they yield FLRW cosmologies; from
(2.5) we see that the standard FLRW time ¢ is related to the parameter A by

dr oc 2 da. (2.25)

Given one of the above solutions for %" as a function of A we can determine A as a function
of ¢ and hence 7 as a function of 7. Of most interest here is the behaviour near n = 0. For
example, for ¢%2 > 0 we have

n~noe (2.26)

for A — oo, as n — 0. This yields (for a choice of integration constant such that ¢ — 0 as
A — 00)

—t o e 2vellh, (2.27)

Given that we start with a cosmological solution for negative ¢, this shows that a big-crunch
singularity will be approached as t — 0. By considering the behaviour as A — —oo we
may similarly deduce that a cosmological solution for positive  must have had a big-bang
singularity at ¢ = 0. In other words, cosmologies with £ > 0 are incomplete in the sense that
they have a beginning or an end (or both) at finite . We shall see in the following section how
they can be completed.
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2.2. The ‘Milne’ gauge

Returning to (2.10), we make the new gauge choice

4

As the possible choices of f are related by a redefinition of the independent variable, we
will need to distinguish the independent variable in this gauge from the parameter A used
previously. Let us call the new independent variable t; it is related to A through the differential

equation
dr = n*(1) dx, (2.29)

which can be solved for 7(A) given any of the scale-factor solutions 1 (1) presented above.
In the gauge (2.28), the action is

I = /dr L., (2.30)
where®
1 /dp\> 1, dy\* 1 doN?| &
Li==e|—) +=n*|—e[—=) +=-@V+ee ") —) |+=n¥2 2.31
i 26<dr> 2| N\ ) tae e ) @ 2" @31)
We observe that for ¢ = —1 the kinetic term is that of a particle in a three-dimensional Milne

‘universe’, so we call this choice of gauge the ‘Milne’ gauge.
The Milne universe is actually just Minkowski space in an analogue of spherical polar
coordinates. The Cartesian field variables X, (u =0, 1, 2) are

Xo=%inE’ —ee™¥)
X1 =230 +eeV)coso (2.32)
X, =+ine’ +ee V)sino.

Note that
X=X’ + X2+ X, =en’ (2.33)

Since 172 is positive, it follows that X2 < 0 when € = —1, and X? > 0 when ¢ = 1.
The X2 < 0 region is the Milne region of Minkowski space and cosmological solutions are
trajectories in this space. Generic trajectories reach n = 0 at finite FLRW time, corresponding
to a cosmological singularity. However, the hypersurface n = 0 is just the Milne horizon,
and the singularity at the Milne horizon disappears in the Cartesian coordinates X,,. The
trajectory can therefore be smoothly continued through the Milne horizon in Cartesian
coordinates to the region in which X?> > 0, where we need € = 1. Thus, on passing
through the Milne horizon, a cosmological trajectory becomes an instanton (and vice versa).

The target space and the scale-factor solutions given previously can now be combined
into a single solution for X ,. For example, for €2 > 0, the solutions are

| £nlsy sinh(€4) + ¢, cosh(€A)], e=1,

w= . (2.34)
+n[s, cosh(£L) + ¢, sinh(¢1)], €e=-1,

6 Note that L, dr = L di, where L is the Lagrangian in the gauge used previously.
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where
so = v 1+ a?cosh(€Xry), a=q_/L,
co = —v 1+ a?sinh(£A),

c1 = cosh(£Ag) cos(6y) + a sinh(£Ag) sin(Hy),

(2.35)
s1 = —sinh(£Ag) cos(6y) — a cosh(€Xry) sin(6y),
¢y = —a sinh(£Ag) cos(By) + cosh(£Xrg) sin(6yp),
5o = a cosh(£Ag) cos(6p) — sinh(£Ag) sin(6y).
Note that (¢, £ 5,,) is null.
3. Instanton-cosmology transitions
The Milne gauge Lagrangian L. in Cartesian coordinates is
L, = [(dX/dv)* + k(eX?)"']. 3.1)
The constraint is now
(dX/dr)? = k(ex?r~ L. (3.2)

We thus have a problem analogous to that of a particle of zero energy in a central potential,
with conserved SL(2; R) ‘angular momentum’

0" = " X, (dX, /dr). (3.3)

In contrast to the usual central potential problem, X? can be zero (or negative) for non-zero
3-vector X and ¢2 may also be positive, negative or zero. Nevertheless, the problem is still
exactly soluble; the solutions are the solutions X, (1) given earlier with A expressed as a
function of r. However, if n — 0 as |A| — oo it is generally necessary to piece together
several of the previously given solutions to obtain a full trajectory in the 3D Minkowski space.
In this section, we shall show how this can be done.

The formulation of the problem in terms of Cartesian field variables X,, makes it obvious
how trajectories can be smoothly continued through the Milne horizon in certain special cases.
For example, if y is an odd integer then the Lagrangian (3.1) is independent of €. It then
follows from standard theorems about the existence and uniqueness of solutions of ordinary
differential equations that any trajectory that crosses = 0 will connect smoothly to a solution
on the other side of the Milne horizon with the same value of k; a simple example is y = 1, for
which the trajectories are straight lines. We discuss this case in detail below. If y is an even
integer then the Lagrangian (3.1) depends on both € and k but only through the combination
ek. It follows that any trajectory that crosses = 0 must smoothly join to a solution on the
other side of the Milne horizon with a flipped sign of k. A simple example is y = 2, which
we also discuss in detail below.

It may not be obvious that a flip of the sign of k is consistent with continuity in the full
field space, prior to imposing the ansatz (2.1), because one might expectthe k = 1l and k = —1
metrics to belong to disjoint subspaces in the space of all metrics. However, as previously
observed, the k = %1 trajectories all approach a k = 0 trajectory near X> = 0, so the actual
radius of curvature goes to infinity at a cosmological singularity whatever the value of k. In
other words, the subspace of k = 1 FLRW metrics is joined to the subspace of k = —1 FLRW
metrics precisely at the points in the full space of fields at which we flip the sign of &, so there
is no discontinuity caused by this sign change.
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Another simple case which we analyse in detail below is k = 0, in which case the results
are obviously y-independent’.

3.1. The k = 0 case: flat cosmologies
For k = 0, the equation of motion for X* is trivially solved by
X, =a,+put, (3.4)

for constant 3-vectors @ and p. The constraint implies that p> = 0; in other words, the
trajectories in Minkowski space are null. In this case,

2 =(a-p? 3.5
and it follows that X2 = a® £ 2¢1. If £ # 0 we are free to shift 7 to put this into the form

X* = 201, (3.6)
Integrating (2.29) then yields

7 o et 3.7)
and therefore

n? = eX? x e (3.8)
Note that

t «x =+, 3.9

whereas (1) > 0. It follows, given a choice of sign, that the solution (2.20) covers only
the part of the trajectory for which ¢ is either positive or negative, but not both. Any null
geodesic must cross the horizon once, at t = 0, so if we associate ¢ > 0 with a big-bang
cosmology then we must associate ¢t < 0 with a pre-big-bang instanton. These solutions give
rise to the upper and lower diagonal lines in figure 1; the two possibilities correspond to the
sign choice in (3.8). The transition from instanton to cosmology, or vice versa, occurs at the
hypersurface X? = 0, which becomes the hyperbola X(?> — X;?> = X,2 when projected onto
the (Xo, X)-plane.

The remaining possibility for k = Oistohave a- p = 0,i.e. £> = 0. In this case, X> = a
and the geodesic will never reach the Milne horizon. This corresponds to the middle diagonal
line in figure 1.

Thus, for k = 0 we have instanton—cosmology transitions with £ > 0 for any value of .
In particular, this is true for IIB supergravity (for which y = 2/3).

2

3.2. The y = 1 case: geodesics

The Lagrangian L. is especially simple for y = 1; in this case, the equation of motion for X,
is solved by

X, =a,+pur, (3.10)

7 There is one other circumstance in which the physics is independent of y: it is obvious from (1.1) that solutions
with x = 0 cannot depend on b and hence that solutions with & = 0 cannot depend on y. These are the solutions
with X, = 0. It is not immediately obvious from the Lagrangian (3.1) why this should be the case, but this can
be seen from an application of the Jacobi principle (see, e.g., [1]), which states that zero-energy solutions of the
equations of motion of (3.1) are geodesics in the metric (¢ X%)?~! dX - dX, which is a conformal rescaling of the
3D Minkowski metric. On the 2D subspace with X> = 0, we can introduce lightcone coordinates X4 and write
the metric as (e X_ X,)? ! dX_dX,. Setting U = (eX_)", V = €X,”, the metric becomes a constant times dU dV,
for any y.
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k=1, k=0,
1250 ’>0 k=0,
€ =— 12_0
£=+1 A k=0,
- 1’>0
// //
,,,,,,,,,,,,,,, 2 e 1250, k=1
! - 12=0, k=1
1°<0, k=1

€=+]

£=-1

Figure 1. Instantons and cosmologies as geodesics in a projection of Milne spacetime. The solid
(dashed) lines are cosmologies (instantons), which are separated by the dotted hyperbola with
Xo? — X12 = X5

for constant 3-vectors a and p, and the constraint implies that p> = k. Note that

0> =(a-p)? —ka’. (3.11)
Aslong as k # 0 we can shift 7, if necessary, to arrange for p-a = 0, in which case a> = —k¢?
and

X =k(r* - ). (3.12)

Note, however, that p - a = 0 implies that £ is non-spacelike if p is timelike; i.e., 22> 0if
k=—1.

The £2 > 0 cases are especially interesting. Consider first the k = —1 subcase, for which
X is timelike for |[t| > £ but spacelike for |t| < £. In other words, a single straight-line
solution in Minkowski space can be viewed as a cosmology (¢ = —1) for |t| > ¢ but as an
instanton (¢ = 1) for |t| < £. As argued in [1] (in the context of another model with similar
features), this corresponds to a big-crunch/big-bang transition through a classically forbidden
region behind the Milne horizon. For k = 1 the roles of cosmology and instanton are reversed,
and the cosmological region (in which X? < 0) corresponds to a universe expanding from a
big bang (where the trajectory first crosses the Milne horizon) to a big crunch (where it again
crosses the Milne horizon). For each of these two subcases, (2.29) reduces to

ke dt 5
dr = o " > 0), (3.13)
and we must solve this for 7(X) in two cases:
e ke = —1,|t| < £. In this case,

T = {tanh(£}), (3.14)
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and hence

2 2 e
=X"=—. 3.15
7 cosh?(£A) ( )
This is the y = 1 case of solution (2.21).
e ke = 1. |t| > £. In this case,

T = —{ coth(¢)), (3.16)

and hence

T= X = _c (3.17)
=  sinh(eA) '
This is the y = 1 case of solution (2.22).

Thus, in these cases the full trajectory connects a collapsing FLRW universe to an expanding
FLRW universe via an instanton solution; in fact, to one of the super-extremal D-instantons
of [4]. As noted above, a change of sign of k reverses the roles of cosmology and instanton,
so which of the two (k = %1) super-extremal D-instantons is relevant depends on the sign of
k. Both these £2 > 0 possibilities are illustrated in figure 1, where the timelike geodesics with
k = —1 are vertical lines while the spacelike geodesics with k = +1 are horizontal.

A similar calculation for £2 < 0, for which we must set ¢ = k = 1 for a non-trivial
solution, yields

T(A) = —/ L2 cot( —Ezk), (3.18)
and thence
72
2
1 sin2 (v/—€21) . G-19)
This is the sub-extremal D-instanton solution (2.23), which is periodic in imaginary time.

Finally, we consider 2% = 0 (which includes £, = 0, and hence a,, = 0, as a subcase).
In this case, X2 = kt? and hence t = —(ek)/A. This yields n*> = €X? = (ek)/A?, which
implies both ek = 1 and n?> = 1/A%. This is the y = 1 case of solution (2.24). However,
this solution must be interpreted either as a cosmology (when k = —1) or as an instanton, in
fact the extremal D-instanton (when k = 1) but not both. For the interpretation as a k = —1
cosmology we noted previously that this case yields a d-dimensional Milne universe® for
which the apparent cosmological singularity is actually just a coordinate singularity that can
be resolved without the need for scalar fields. Thus, we should not expect (and have not
found) any ‘instanton phase’ of the cosmological trajectory in this case. The cosmological
and instanton interpretations are, in this case, separate solutions, not linked by a spacetime
cosmological singularity. In figure 1, we have illustrated the k = 1 instanton with £2 = 0. The
corresponding cosmological solution with k = —1 is not indicated but consists of the £ — 0
limit of the £2 > 0 case. This limit implies that X, — 0: the two hyperbolae join to form a
cross and the ‘instanton phase’ of the solution disappears.

We have now seen how all the solutions found in section 2 correspond, for y = 1, to some
straight-line trajectory in the three-dimensional Minkowski spacetime with coordinates X ,.
Note, in particular, that a single straight-line trajectory in Minkowski ‘superspace’ corresponds
to cosmological and instanton solutions with the same value of k.

8 This is a spacetime Milne universe, and is not to be confused with the Milne ‘universe’ in which cosmological
trajectories evolve.
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3.3. The y = 2 case: cyclic universes

There is one other value of y for which the equations we have to solve are linear in Minkowski
coordinates, namely y = 2. We see from (3.1) that the effective Lagrangian in this case is

L. = 1[X? + (ke)X?]. (3.20)
The equations of motion are

X, = (ke)X,, (n=0,1,2). (3.21)
We must choose solutions that satisfy the constraint

X? = (ke)X?, (3.22)

which can be interpreted as a ‘zero-energy’ condition. We have already discussed the k = 0
case, so we may assume that k£ # 0. We now consider in turn the two possible values of ke:

e ke = 1. In this case, the equations are solved by

X,=A,e"+B,e ", (3.23)
for real 3-vectors A, B, and the constraint implies that

A-B=0. (3.24)
This implies that

X*=A’e¥ + BZe ™, (3.25)
and that

2 = —4A’B%. (3.26)

If both A and B are null then we have a solution with ¢ = 0 and X? = 0. This does not
correspond to one of the solutions found in section 2 because the coordinates used there
do not cover the hypersurface X> = 0, but this ‘extra’ solution is of no physical interest.
For the other £2 = 0 cases, we may assume without loss of generality that only A is null,
so that

X? =B 7, (3.27)

where B is non-null. If A is non-zero then B must be spacelike in order to be orthogonal
to A, in which case X% > 0. This case is relevant only for € = 1, in which case k = 1.
These are extremal D-instantons for y = 2. If A = 0 then B may be either spacelike or
timelike. If B is spacelike then we must choose € = 1 and we then have a further special
case of the extremal D-instanton. If B is timelike then we must choose € = —1 and we
then have the unique (k = —1) ¢> = 0 FLRW cosmology, for which 1 o e~*. This is
non-zero for all finite 7, so it might appear that this is a cosmology without a singularity.
However, as we shall see in the following section, the y = 2 case is a very special one
for ¢ = 0 because T becomes infinite for finite FLRW time .

This leaves those cases for which neither A nor B is null. If both are timelike or
spacelike then £2 < 0 and X? is never zero. If one is timelike and the other spacelike then
£2 > 0 and X? passes through zero; this is case (2.21) of subsection 2.1.2.

o ke = —1. In this case,

X, =Cue"+C,e, (3.28)
where C, is a complex 3-vector (with complex conjugate C,) subject to the constraint

c-C=0. (3.29)
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This implies that

X? =% + C2e7 T, (3.30)
and that

2 =12C* >0. (3.31)

For £ = 0 (which occurs when C is null) we again have the X 2 = 0 case. Otherwise,
£2 > 0 and X? passes through zero whenever

T=1+nm/2, (ne?)), (3.32)
where Ty is any solution of e** = —C?/C?2.

As anticipated, all non-trivial cosmological trajectories with > > 0 have an instanton
phase, behind the Milne horizon, to which they are smoothly connected through a cosmological
singularity. These trajectories connect k = £1 cosmologies with k = F1 instantons, and in
the ke = —1 case the trajectories are cyclic universes. We conclude this subsection with an
explicit example.

First, note that the constraint (3.29) is solved, without loss of generality, by

C, = A, eP cos&, e sin &), (3.33)

where A is a real constant determined by [2C?| = ¢, and Bi1, Ba, & are three real constant
angles. This yields

X,  =2A(cos T, cos(t + 1) cos &, cos(t + B) siné§). (3.34)
Consider the particular case 8; = —%, B> = 0, for which
£ . .
w = (cost,sintcos&, cosTsing). (3.35)
cosé&

In this case X% = —¢ cos 21, independent of £. Recalling that € X 2 > 0 for all 7, we see that
€X? = {|cos2t]. (3.36)

Using this in dt = 5 dA, we may integrate to deduce that |cos 27| = 1/ cosh 22, and hence
that

) £
= (3.37)
cosh 24
This is precisely the y = 2 case of (2.21), where for ¢ = —1 we viewed it as a big-bang to

big-crunch k = 1 cosmology. For this interpretation, we should choose T € (—m /4, 7w /4) but
we have now discovered that we can follow this solution through the big crunch at t = 7 /4
to an instanton solution, given by the same formula but with t € (7 /4, 3w /4). This then re-
emerges as another big-bang cosmology for t € (3w /4, 57 /4). If the first one evolved in the
future-Milne region of the Minkowski ‘superspace’ then the second evolves in the past-Milne
region. After a further recollapse to an instanton phase for v € (57/4, 7w /4), the cycle is
completed as this gives way to a new big-bang universe. There are thus two big bang and
two big-crunch singularities in every cycle, but the transition through them is smooth in the
augmented target space (see figure 3).
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3.4. Genericy

As already observed, the Lagrangian (3.1) tells us that for general y we have a problem
analogous to that of a particle in a central potential. Using (2.32) to return to ‘polar’
coordinates, we find that the Lagrangian governing the radial motion is

€ dn 22 2p—1)
Lia = 2 |:<E> + ? + (ke)n“Y . (3.38)

As expected, we have a ‘centrifugal’ term for non-zero £2. Recall that the constraint implies
that we must retain only the ‘zero-energy’ solutions of the equation of motion, for which

dn\> &
DY = = 4 ke (3.39)
dr n?

This is equivalent to (2.14) but with t as the independent variable. The solutions are therefore
the same as those given in 2.1.2 but with 1 expressed as a function of t rather than A.

For £ < 0, we have a centrifugal barrier that prevents n from passing through zero. For
£% > 0, the centrifugal barrier becomes a ‘centrifugal well’ that dominates near = 0. For
ke = —1, the potential becomes positive for sufficiently large n; as positive values of the
potential are not accessible for zero energy, the ‘particle’ is confined to finite 1, and must fall
to n = 0 because the potential has no stationary points (under the assumed conditions). For
¢> > 0 and ke = 1, the potential is always negative; it has a stationary point if > 1 but the
energy is fixed at zero so all trajectories must start at infinite # and then fall to » = 0. The net
conclusion is that 1 reaches zero on all £2 > 0 trajectories, in agreement with our Cartesian
coordinate analyses for y = 1 and y = 2. Moreover, from the explicit £> > 0 solutions
(2.20)—(2.22), and the relation 5> dA = dr, one may show that

n® o |t| o |tV as n— 0, 2 > 0), (3.40)

where ¢ is the FLRW time, and here we have chosen the time origin such thatt — Oast — 0.
This shows that there is a cosmological singularity at t = 0, corresponding to the time T = 0
at which the cosmological trajectory reaches n = 0.

The ¢% = 0 case is special and needs a separate discussion. In this case, we may assume
that ke = 1 because otherwise there is no solution other than the trivial k¢ = 0 solution for
which 7 is constant. Given ke = 1, there is a negative effective potential and hence no obvious
barrier to prevent 7 passing through zero. However, the £2 = 0 solution is

— 1/2-y)
nz{w DrVen oy £, 3.41)

—T

e, y =2.
This shows that n reaches zero at finite T if y < 2 and at infinite 7 if y > 2 (in agreement
with our earlier analysis of the y = 1 and y = 2 cases). This does not necessarily mean that
n will not pass through zero if y > 2 because it may happen that T becomes infinite for finite
FLRW time ¢. To see whether this happens we need to consider the relation between ¢ and 7,
which is

dr = 2’ =D gz, (3.42)
This yields for all values of y
d-2)/y
14 2
= (X , 2 =0). 3.43
n (2 — d) ( ) (3.43)

One sees from this result that for all values of y there is a cosmological singularity at = 0,
i.e. at finite FLRW time. However, as already noted for y = 1, there is no transition from a
cosmology to an instanton, or vice versa, when 2 =0.
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For y = 1 and y = 2, we have seen that in Minkowski field variables there is actually a
smooth connection at n = 0 onto an instanton solution in the region behind the Milne horizon.
We now want to determine whether a similar smooth transition is possible for other values of
y. As we have just seen, this issue arises only for £2 > 0, so we now restrict our discussion
to that case. From the general solutions found previously we see that a trajectory can reach
X2=0 only as || = oco. Let us concentrate on the case in which n — 0 as A — 00; in this

CaSG9

lim X, (X) = ¢, +sp, (3.44)
A—00
independently of k. It follows that the ¢ = —1 solution for X, can be matched continuously

at A = oo onto the € = 1 solution at A = oo, without changing parameters; i.e., with the same
Ao, g— and 6y for the instanton and cosmological solution.

The next question is whether the transition is continuous for the first derivatives. Using
the formulae given above, we find the following results'’:

(ci +5:)/(co + s0) y <1
dx; A — k=1
lim 3% _ J /< v (i=1.2). (3.45)
)»—>OOdX0 Si/S() ]/=1,k=—1

(¢i = si)/(co — s0) y >1
Thus, the first derivatives match in all cases with the same choice of 6y, g_ and Ay parameters
on both sides.

Note that for y = 1 continuity of the first derivatives implies that one must patch together
solutions with the same value of k, leading to the straight lines of section 3.1. For all other
values of y, we could choose to patch together solutions with the same or opposite k, but
continuity of second derivatives imposes further restrictions. From the general solutions given
previously, one can show that

0 y <1/2
€ X const y=1/2
€ X 00 %<y<1
. d2X; )
lim 5 = 0 y=1 i=12). (3.46)
k%oodXO
€k x 00 l<y<?2
ek x const y =2
0 y >2

This shows, for instance, that when 1 < y < 2 the second derivatives are continuous if ke is
the same on both sides, meaning that on a smooth trajectory k must flip sign across the Milne
horizon; otherwise there is a discontinuity in the second derivatives. For y > 2, the second
derivative is continuous irrespective of whether k flips sign; moreover, as already observed,
there is an analytic extension for integer y. For y < 1/2, there is also no discontinuity
in second derivatives whether or not k flips sign. However, when % <y < 1, there is a
discontinuity in second derivatives irrespective of whether & flips or remains the same, which
means that there is no smooth transition through the Milne horizon for y in this range.

To summarize, there are transitions between instanton and cosmological ‘phases’ for
k # 0 that are continuous up to and including second derivatives provided that y < 1/2 or
y > 1. For example, a k = 1 universe, which would normally be thought to start with a big

9 Recall that the parameter A in the X% > 0 region is independent of the parameter A in either of the X2 < 0 regions.
10 The 1 -dependence arises because the (y-independent) leading terms at large A of {f—)\“ cancel.
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Figure 2. Instanton extensions of closed big-bang to big-crunch universes for y = 0.4, y = 1 and
y = 3. The y = 1 curve is a straight line and the y = 3 curve is analytic.
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W
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Figure 3. Cyclic universes with ke = —1 for y > 1. The generic y = 2 curve is an ellipse.

bang and end with a big crunch, may actually be part of a larger instanton—cosmology with pre-
big-bang and post-big-crunch instanton phases, as illustrated in figure 2 for y = 0.4,y =1
and y = 3. The y = 0.4 curve is probably not analytic. In general, we would expect continuity
in all derivatives to impose further restrictions, and it may be that an analytic continuation is
possible only for integer y .

As we have seen for the y = 2 case, these instanton—cosmology transitions can connect
to form cyclic universes, and this remains true for all even y; in fact, it is true for all y > 1
if one requires only continuity up to and including second derivatives. This is illustrated in
figure 3.

3.5. Big-bounce universes for IIB supergravity

There is an important feature that distinguishes the trajectories in y < 1 models from those
in y > 1 models. In both cases, a trajectory that approaches the Milne horizon is null at the
point of crossing. For y < 1, this null curve approaches a null geodesic generator of the cone
X2 =0, since dX* o X*. In contrast, for y > 1,dX*" is not proportional to X*.

This means that there is an additional possibility for y < 1: in this case, a cosmological

(e = —1) trajectory with £ = £1 may be smoothly joined to another cosmological (¢ = —1)
solution k¥ = =1, where by ‘smooth’ we mean continuity up to and including second
derivatives.

For example, a collapsing closed universe can bounce off its big-crunch singularity to
begin another phase as an expanding open universe. This possibility is illustrated in figure 4
fory =2/3.

This possibility is relevant to IIB supergravity since y = 2/3 for the uncompactified
d = 10 theory. By considering a Kaluza—Klein ansatz of the form

ds® = ds +dyy, ¢ = da, X = Xa» (n=d+1,....10), (3.47)
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Figure 4. A big-bounce universe for y = 2/3, in which an open universe that is collapsing to
a big crunch bounces off the Milne horizon in the augmented target space to emerge as a closed
big-bang universe. The latter necessarily collapses to a big-crunch singularity, but this is again
another bounce off the Milne horizon from which there emerges an open, but expanding, universe.

we get an effective action in d < 10 dimensions with'!

1 /2(d -2
== (7) (3.48)
2 d—-1)
Assuming that d > 3, this implies that y € [1/2,2/3]. This is precisely in the range
% < y < 1 for which a smooth transition to an instanton is not possible (for k # 0). However,
a smooth bounce is possible, as we have just seen.

4. Discussion

In this paper, we have expanded on the observation in [1] that cosmological singularities
may be resolved in models with scalar fields parametrizing a hyperbolic target space via an
interpretation as coordinate singularities of a Milne ‘super-metric’ on the ‘augmented target
space’ of scalar fields and metric scale factor. Specifically, the segments of cosmological
trajectories that lie behind the Milne horizon (for which the scale factor of the Lorentzian-
signature spacetime is imaginary) have been shown to correspond, in a particular class of
models with H, target space, to the ‘super-extremal’ D-instanton solutions of [4].

It is interesting that the original, extremal, D-instanton of [5], generalized to d spacetime
dimensions, does not connect to a cosmological solution in the way that the super-extremal
D-instanton does, and the same is true of the sub-extremal instantons of [4]. The reason for
this is that the extremal and sub-extremal instantons are non-singular, so there is no way to
join them on to any cosmological solution in a continuous way. Recalling the debate over
the significance of singularities in the context of the Hawking—Turok cosmological instanton
[9], it is amusing to note that singularities of D-instantons are essential to the cosmological
interpretation that we have proposed for them.

' By embedding the lower-dimensional scalars differently one can obtain other values of y, however. For
example, N = 8 supergravity in four dimensions can be truncated to gravity coupled to a vector and a scalar
with dilaton couplings a = 0, 1/+/3, 1, +/3 [8]. Upon reduction to d = 3 these give rise to our model (1.1) with
y =1,/3/2, 1/«/5, 1/2. Note that these are all in the range 1/2 <y < 1.
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The models considered here generalize the metric-scalar sector of IIB supergravity to
arbitrary spacetime dimension d and an arbitrary H, radius, which is simply related to the
parameter y arising in our analysis. The y = 1 case is particularly simple as the cosmological-
instanton trajectories are just straight lines. In particular, the k = —1 universes of this model
undergo a big-crunch/big-bang transition of the type proposed in [1], for which we have here
identified the intermediate ‘instanton phase’ . Another special case is y = 2, for which closed
universes allow a smooth continuation to cyclic universes corresponding to closed curves in
the analytic extension of the augmented target space. The idea that the universe may be cyclic
is an old one that has recently been revived in the braneworld approach to cosmology [10];
here we have found an explicit model that realizes this idea.

For y < 1/2 and y > 1, corresponding to two disjoint ranges of the H, radius, we have
shown that there exists a continuation of cosmological trajectories through the Milne horizon
with continuous first and second derivatives, and the continuation is analytic for integer y .
For the values 1/2 < y < 1, which are relevant for IIB supergravity and its compactifications
to d < 10, we found that there is a smooth ‘big-bounce’ solution in which a collapsing
cosmology is bounced off the big crunch to become an expanding big-bang universe.

Our results are also of potential relevance to ITA string theory because in the special case
of zero axion, i.e. x = 0, the Lagrangian (1.1) is a truncation of massless IIA supergravity, or
its Euclidean counterpart. Interestingly, there is an instanton/cosmology solution that survives
this truncation, which corresponds to the hypersurface X, = 0 in Cartesian coordinates; it is
just the g_ = 0 solution (2.17) with the scale factor n given by equations (2.20)—(2.22). For
d = 10 and € = k = 1, this is the non-extremal IIA D-instanton of [11]; it has an M-theory
origin because the Kaluza—Klein ansatz

dsi, = e®?/=D ds? — ce™?/* dxi, 4.1)

takes the d = 11 Einstein—Hilbert Lagrangian to the zero axion truncation of (1.1) ford = 10.
One can thus show that both ‘phases’ of the ITA instanton/cosmology solution have a common
M-theory origin as a Schwarzschild black hole: the IIA instanton is obtained by reducing the
black-hole exterior spacetime over time [11, 4] while the IIA cosmology is obtained by
reducing the interior spacetime over a space direction [12]. An interesting open question is
whether there is an extension to the massive IIA theory, for which there is a scalar potential
for the dilaton. We hope to show in a future paper how the results obtained here generalize to
models with a scalar potential that include as special cases both massive ITA supergravity and
the model with cosmological constant that was used in [1] to study the big-crunch to big-bang
transition for flat cosmologies.
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