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Abstract
For models of dilaton gravity with a possible exponential potential, such as the
tensor–scalar sector of IIA supergravity, we show how cosmological solutions
correspond to trajectories in a 2D Milne space (parametrized by the dilaton
and the scale factor). Cosmological singularities correspond to points at which
a trajectory meets the Milne horizon, but the trajectories can be smoothly
continued through the horizon to an instanton solution of the Euclidean theory.
We find some exact cosmology/instanton solutions that lift to black holes in
one higher dimension. For one such solution, the singularities of a big crunch
to big bang transition mediated by an instanton phase lift to the black hole and
cosmological horizons of de Sitter Schwarzschild spacetimes.

PACS numbers: 98.80.−k, 04.60.−m

1. Introduction

In models of gravity coupled to scalar fields, homogeneous and isotropic cosmologies
correspond to trajectories in an ‘augmented target space’ or ‘superspace’, parametrized by
the scalar fields and the FLRW scale factor. There is a natural conformal class of Lorentzian
metrics on this space, the scale factor playing the role of ‘time’, and when the scalar field
target space is a hyperboloid this Lorentzian metric can be chosen to be the metric of a
Milne ‘universe’, which is just Minkowski space in polar-type coordinates. In this case,
cosmological singularities correspond to points at which the trajectory reaches the Milne
horizon [1]. For the models considered in [1], the trajectories were actually geodesics
and hence straight lines in Minkowski space that typically cross the Milne horizon twice,
corresponding to a big bang and a big crunch singularity. In particular, there are trajectories

0264-9381/05/224763+19$30.00 © 2005 IOP Publishing Ltd Printed in the UK 4763

http://dx.doi.org/10.1088/0264-9381/22/22/008
http://stacks.iop.org/CQG/22/4763


4764 E A Bergshoeff et al

that represent a universe undergoing a transition from a collapsing big crunch universe to an
expanding big bang universe across a ‘forbidden’ region of ‘superspace’ behind the Milne
horizon.

In the absence of a potential for the scalar fields, it turns out that FLRW cosmologies
are geodesics in the Milne metric only for a particular radius of curvature of the target
space hyperboloid. We may parametrize these models by a constant γ such that the motion is
geodesic for γ = 1. In a previous paper, we generalized the construction of [1] to (generically)
non-geodesic Milne motion in models for which the target space hyperboloid has an arbitrary
finite radius, corresponding to arbitrary non-zero γ , and we showed that parts of a trajectory
behind the Milne horizon may be interpreted as instanton solutions of the Euclidean theory
[2]. We also showed that for γ = 2 models there exist trajectories that are smooth closed
curves in the Minkowski extension of the Milne superspace, corresponding to cyclic universes
in which cosmological ‘phases’ are separated by instanton ‘phases’, each of which mediates
a big crunch to big bang transition across a region behind the Milne horizon5.

These ideas are applicable to IIB supergravity because the dilaton and axion of that
theory parametrize the hyperbolic space Sl(2; R)/SO(2) ≡ H2, and they potentially imply
a resolution of singularities of flat (k = 0) cosmologies in IIB superstring theory since these
correspond to null lines in the Minkowski extension of the Milne superspace. However,
the H2 radius of curvature (which corresponds to γ = 2/3) is not in the range for which
a generic trajectory has a smooth continuation through the Milne horizon for k �= 0,
and the same applies to the models in spacetime dimension d < 10 obtained by toroidal
compactification.

One purpose of this paper is to apply these ideas to models of dilaton gravity such as
the dilaton-gravity sector of IIA supergravity. As already pointed out in [2], cosmological
solutions of IIB supergravity for which the axion is identically zero are also solutions of
IIA supergravity. More generally, one could set the axion to zero after having redefined the
fields by an Sl(2; R) transformation. This means that any planar cosmological trajectory
in the three-dimensional (3D) Minkowski augmented target space of IIB supergravity must
correspond to some solution of the scalar–tensor sector of IIA supergravity, so this already
shows that the latter can be viewed as trajectories in a two-dimensional (2D) Minkowski
space. The possible consistent truncations simply correspond to the possible choices of this
2D Minkowski subspace. A subtlety that arises in these truncations is that the parameter γ

ceases to be physical because the truncated target space is now a ‘one-dimensional hyperboloid’
for which the intrinsic curvature is trivially zero. Thus, planar trajectories for various values
of γ that previously corresponded to different solutions of different models must now be
viewed as different solutions of the same model. This leads to ambiguities in the continuation
of trajectories across Milne horizons. We investigate the consequences of this in some
detail.

A further feature of IIA supergravity is that it allows an extension to a ‘massive’ IIA
theory with an exponential dilaton potential. This motivates the investigation of cosmological
trajectories in dilaton-gravity models in d spacetime dimensions with an exponential potential
characterized by an arbitrary dilaton coupling constant a. Thus, our starting point will be the
d-dimensional action

I =
∫

ddx
√

ε det g

[
R − 1

2
(∂φ)2 − � e−aφ

]
(1.1)

5 Cyclic universes without cosmological singularities are possible in some models with both a hyperbolic target
space and a scalar potential [3] but these have no instanton ‘phases’ and are therefore quite different from the cyclic
universes under discussion here.
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for d-metric g of signature (ε, 1, . . . , 1) and dilaton φ, and constants � and a. We may
suppose that a � 0 without loss of generality, but allow � to be positive, negative or zero. As
in [2], we have introduced a sign ε such that ε = 1 yields the Euclidean Lagrangian6. For
ε = −1 and d = 10 we have a consistent truncation of IIA supergravity when � = 0,
and when � > 0, we have a consistent truncation of massive IIA supergravity when
a = 5/2. Other values of a, for positive and negative �, arise in M-theory compactifications
to d < 10.

These models have been extensively studied in the past, at least for ε = −1. The equations
describing cosmological solutions are known to be equivalent to those of an autonomous
dynamical system [4], such that cosmologies correspond to trajectories in a 2D phase plane7.
This allows a determination of the qualitative nature of the full space of solutions, and in
this sense the cosmological solutions are already well understood. In particular, all k = 0
cosmologies can be found exactly [5–7]. Here we provide a new ‘explanation’ for this fact:
these solutions are geodesics in the Milne wedge of a 2D Minkowski space. This description
allows us to explore their continuation through cosmological spacetime singularities as smooth
trajectories through the Milne horizon.

A subset of the models studied here have the property that their action is the reduction
of the (d + 1)-dimensional Einstein–Hilbert action, with a possible cosmological constant.
This allows the d-dimensional cosmological solutions to be lifted to (d + 1)-dimensional
Einstein metrics. This is true not only for the cosmological solutions but also for the
instanton solutions because the d-dimensional Euclidean action is obtained in these cases
by considering time-independent fields. Thus, both cosmological and instanton solutions
in d dimensions lift to Lorentzian-signature (d + 1)-metrics. For example, when � = 0
the action (1.1) is the dimensional reduction of the (d + 1)-dimensional Einstein–Hilbert
action. As already mentioned in [2] it is known that d-dimensional cosmologies lift
to the interior of a (d + 1)-dimensional Schwarzschild black hole, and that instanton
solutions lift to the Schwarzschild exterior. These results are applicable to IIA supergravity
and they show that cosmology or instanton solutions can be lifted to solutions of 11D
supergravity.

Our interest here is the lift of the full cosmology/instanton solutions corresponding
to complete smooth 2D Minkowski trajectories. We find, in particular, that the k = 1
Milne geodesics lift to a sequence of all the possible (d + 1)-dimensional (anti-)de Sitter
Schwarzschild spacetimes for a given absolute value of the black hole mass, the negative
and positive mass black holes corresponding to pre- and post-big bang phases, respectively.
Moreover, the big crunch singularity is resolved in the higher dimension in the same way that
certain dilaton black hole singularities are resolved [8].

When � is non-zero there is a similar story for a particular (d-dependent) value of a but
the (d + 1)-dimensional action now has a cosmological constant. Exact cosmological and
instanton solutions of the d-dimensional theory can be found for this value of a. It turns out
that the k = 1 cosmology/instanton solutions corresponding to 2D Minkowski trajectories that
are smooth for γ = 1 lift to (d + 1)-dimensional (anti-)de Sitter Schwarzschild spacetimes.
The � > 0 case is of particular interest because there are then trajectories on which an
entire instanton mediated big bang to big crunch transition becomes non-singular in the higher
dimension, in the sense that the big bang and big crunch curvature singularities become regular
horizons of the (d + 1)-metric.

6 To have a Euclidean action that is positive definite when R = 0 one would need an additional overall factor of −ε,
but this does not affect the field equations, which is all that is needed here.
7 The phase plane should not be confused with the 2D Minkowski superspace; it is essentially the space of velocities
in this space for a particular time parametrization.
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2. Cosmologies and instantons

We begin by explaining how the problem of finding cosmological or instanton solutions of
the general model with action (1.1) can be reduced to solving the equations of motion of an
effective action describing the motion of a particle in a 2D Minkowski space. This is achieved
by the ansatz

ds2
d = ε(eαϕf )2 dτ 2 + e2αϕ/(d−1) d	2

k , φ = φ(τ), (2.1)

where f is an arbitrary function of τ , and

α =
√

d − 1

2(d − 2)
. (2.2)

The (d − 1)-metric d	2
k is (at least locally) a maximally symmetric space of positive (k = 1),

negative (k = −1) or zero (k = 0) curvature. One can choose coordinates such that

d	2
k = (1 − kr2)−1 dr2 + r2 d
2

d−2, (2.3)

where d
2
d−2 is an SO(d − 1)-invariant metric on the unit (d − 2)-sphere; note that

d	2
k = d
2

d−1 when k = 1. This ansatz constitutes a consistent reduction of the original
degrees of freedom to a two-dimensional subspace, the ‘augmented target space’, with
coordinates (ϕ, φ). The full equations of motion reduce to a set of equations that can themselves
be derived by variation (with respect to φ, ϕ and f ) of the effective action

I =
∫

dτ

{
1

2
f −1ε(ϕ̇2 − φ̇2) + f [k(d − 1)(d − 2) eϕ/α − � e2αϕ−aφ]

}
, (2.4)

where the overdot indicates differentiation with respect to τ . For ε = −1 we can interpret τ

as a time coordinate related to the time t of FLRW cosmology in standard coordinates by

dt = eαϕf dτ. (2.5)

For ε = 1 the metric has Euclidean signature and we can interpret τ as imaginary time.
To proceed we introduce new field variables (U, V ) that we will shortly be able to interpret

as null coordinates for a 2D Minkowski space. These variables are defined by

eϕ = (−εUV )αγ , eφ =
(

−εV

U

)αγ

, (2.6)

for some constant γ . Although different choices of γ give equivalent solutions in a given
patch, say U > 0, V > 0, ε = −1, the continuation of these solutions to the entire Minkowski
plane (U, V ) is sensitive to the value of γ , as will be explained in section 3. Note that we
need both signs of ε to cover the entire Minkowski plane (U, V ) with real scalars (ϕ, φ): if
the coordinates U and V have the same sign we have to choose ε = −1 and if they have
opposite signs ε = 1. With this proviso one can always assume both (−εUV ) and (−εV/U)

to be positive. In terms of the new variables, the effective action is

I =
∫

dτ {2α2γ 2ε(f UV )−1U̇ V̇ + f [k(d − 1)(d − 2)(−εUV )γ

−�(−εUV )2α2γ (−εU/V )αγ a]}. (2.7)

To obtain a canonical kinetic term we now fix the time-reparametrization invariance by
choosing

f = − 2

(d − 2)εUV
. (2.8)
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The resulting action is

I = −1

2
(d − 1)

∫
dτ

{
γ 2U̇ V̇ − 4k(−εUV )γ−1

+
4�

(d − 1)(d − 2)
(−εUV )2α2γ−1(−εU/V )αγ a

}
. (2.9)

However, the equations of motion of this action must be supplemented by the f equation of
motion of the original action, which is the constraint

γ 2U̇ V̇ = −4k(−εUV )γ−1 +
4�

(d − 1)(d − 2)
(−εUV )2α2γ−1(−εU/V )αγ a. (2.10)

Note that this is just the condition that a particle in a 2D space with action (2.9) has zero
energy. Given a zero-energy solution of the equations of motion for U and V we may read off
the (Einstein-frame) metric and dilaton field from

ds2
d = 4ε

(d − 2)2
(−εUV )2α2γ−2 dτ 2 + (−εUV )2α2γ /(d−1) d	2

k ,

eφ =
(

−εV

U

)αγ

.

(2.11)

For ε = −1, the FLRW time t is now related to the parameter τ by

dt ∝ (UV )α
2γ−1 dτ. (2.12)

We have now formulated the problem in such a way that cosmologies, given by (2.11),
correspond to trajectories in a 2D Minkowski space with null coordinates U,V . More
precisely, cosmological solutions correspond to trajectories in either the future Milne patch
(U > 0, V > 0) or the past Milne patch (U < 0, V < 0) of the 2D Minkowski space. The
null lines U = 0 and V = 0 are the Milne horizon. The 2D Minkowski space should therefore
be thought of as the analytic extension of a Milne ‘universe’. Trajectories in this ‘universe’
correspond to cosmologies, and a cosmological singularity in spacetime corresponds to a point
at which a trajectory crosses the Milne horizon. On crossing the horizon, into the Rindler
patches of the 2D Minkowski space, the trajectory must be re-interpreted as an ‘instanton’,
i.e., as a solution of the Euclidean action.

Despite the cosmological spacetime singularity, the continuation of the cosmological
trajectory through the Milne horizon may be smooth. For example, if a = 0 and k = 0 we
may choose γ so as to make the potential a constant, in which case the motion is geodesic
motion and all trajectories are straight lines in the 2D Minkowski ‘superspace’. This is
essentially the point made in [1] in the context of a model with N scalar fields, in which
case the trajectories were straight lines in an (N + 1)-dimensional Minkowski space. Here
we are restricted to N = 2 but we allow for non-zero a and consider non-flat (k �= 0)

cosmologies. Clearly, in this more general context the motion in the 2D Minkowski space
will not be geodesic but there may nevertheless be smooth trajectories that cross the Milne
horizon. From [2] we know that this indeed happens when � = 0 and even that there can be
elliptical trajectories in the analytic continuation of Milne to Minkowski space that correspond
to a closed (k = 1) universe undergoing an endless cycle of big bang to big crunch transitions
mediated by (k = −1) instanton ‘phases’.

We now plan to investigate to what extent these features carry over to the general model
summarized by the effective action (2.9). We will concentrate on those special cases for which
an exact solution can be found. These cases are as follows:
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• � = 0. This case was partly dealt with in [2], as the special case of planar trajectories
in a IIB-type model. In the IIA-type case considered here, the Lagrangian (1.1) from
which we started is the dimensional reduction of the Einstein–Hilbert action in (d + 1)

dimensions. The dimensional-reduction formula is

ds2
d+1 = −ε eφ/α dz2 + e−2αφ/(d−1) dsd

2

= −ε

(
−εV

U

)γ

dz2 +
4ε

(d − 2)2
(−εUV )2α2γ−2

(
−εU

V

)2α2γ /(d−1)

dτ 2

+ (U 2)2α2γ /(d−1) d	k
2. (2.13)

Note that this metric has Lorentzian signature for either sign of ε. This allows any
cosmology/instanton solution of the d-dimensional theory to be re-interpreted as a
Lorentzian-signature solution of (d + 1)-dimensional general relativity.

• a = √
2/

√
(d − 2)(d − 1). For this value of a the Lagrangian (1.1) is the dimensional

reduction of (d + 1)-dimensional gravity with a cosmological constant, so we can use
the (d + 1)-dimensional Schwarzschild (anti-)de Sitter solution to obtain a solution in d
dimensions.

• a = 0. In this case, the motion in 2D Minkowski space is analogous to motion in a central
potential.

• k = 0. In this case all cosmological solutions are already known explicitly. Here we give
an alternative description of them as straight-line geodesics in a 2D Milne ‘superspace’.

3. Zero cosmological constant (Λ = 0)

Setting � = 0 in (2.9) we get the action

I = −1

2
(d − 1)

∫
dτ {γ 2U̇ V̇ − 4k(−εUV )γ−1}. (3.1)

We have still to choose γ . The choices γ = 1 and γ = 2 are special because the equations
of motion are then linear, so we shall consider only these two possibilities. From (2.6) it is
obvious that the variables (U, V ) for the choice γ = 1 are not the same as these variables
for the choice γ = 2, so we rename the latter (Ũ , Ṽ ). Also, it is clear from (2.12) that the
independent parameter τ for the choice γ = 1 is not the same as the independent parameter
for the choice γ = 2, so we call the latter λ. These considerations lead us to consider the
following cases:

• γ = 1. In this case, we take the independent variable to be τ and the dependent variables
to be (U, V ), so we seek solutions of the equations of motion for U(τ) and V (τ).

• γ = 2. In this case, we take the independent variable to be λ and the dependent variables
to be (Ũ , Ṽ ). In other words, we seek solutions of the equations of motion for Ũ (λ) and
Ṽ (λ). Note that the formula (2.11) for the metric and dilaton still applies but with (U, V )

replaced by (Ũ , Ṽ ) and τ replaced by λ.

For either choice, the cosmological solutions correspond to trajectories in a Milne wedge
of 2D Minkowski space with UV > 0, or Ũ Ṽ > 0, since this condition is required for real
ϕ. The null lines UV = 0 (or Ũ Ṽ = 0) are the Milne horizon, and cosmological singularities
correspond to points at which this horizon is crossed. This can be seen from the fact that
the scale factor eϕ goes to zero as UV → 0. Inasmuch as we are concerned only with
cosmological solutions away from their big bang and big crunch singularities, the two choices
of γ yield equivalent solutions; the correspondence between them is given by

|U(τ)| = Ũ 2(λ), |V (τ)| = Ṽ 2(λ), (3.2)
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and the relation

dτ = −εŨ(λ)Ṽ (λ) dλ. (3.3)

We shall solve the equations of motion for both values of γ and verify that the solutions are
related in this way.

Given this relation, it might seem pointless to consider both values of γ . However, the
two choices of γ need not yield equivalent trajectories in the analytic continuation of 2D Milne
to 2D Minkowski space. The reason for this is that the Minkowski space with null coordinates
(U, V ) is not the same space as the Minkowski space with null coordinates (Ũ , Ṽ ); the two
differ by a conformal transformation that is singular on the Milne horizon. This possibility is
a special feature of 2D Minkowski space: the conformal transformation can be removed by
a time reparametrization, so that what was initially motion in a 2D Minkowski space again
becomes motion in a 2D Minkowski space, albeit with a different potential energy function.
Thus, there is more than one possible continuation of a cosmological trajectory to a smooth
trajectory in the 2D Minkowski continuation of 2D Milne. Moreover, a smooth trajectory that
crosses the Milne horizon in the coordinates (U, V ) will not be smooth in the coordinates
(Ũ , Ṽ ) because of the singularity of the conformal rescaling that relates the Minkowski metrics
in these two sets of variables.

3.1. Milne geodesics (γ = 1)

We now set γ = 1 in (3.1) to get the action

I = −1

2
(d − 1)

∫
dτ {U̇ V̇ − 4k}. (3.4)

The potential is now a constant, so the equations of motion are

Ü = 0, V̈ = 0. (3.5)

The solutions, subject to the zero-energy constraint

U̇ V̇ = −4k, (3.6)

are the straight lines

U = cτ, V = −4k

c
τ + m, (3.7)

for constants c and m. Each of these straight lines corresponds to some cosmology/instanton
solution of the equations of motion of our original action (1.1). It will be a cosmology in a
region of the (U, V )-plane with UV > 0 and an instanton in a region with UV < 0. Each of
these solutions must descend from a Lorentzian-signature (d + 1)-dimensional metric, and we
now wish to determine what these higher dimensional metrics are.

We may restrict ourselves here to k �= 0 as the general k = 0 case will be discussed later
in a separate section, so this leaves k = ±1. The m = 0 case is clearly special, as the straight
line trajectory passes through the origin of the (U, V ) space, and kε = 1 everywhere; in these
cases, the dilaton is constant and the d-metric is flat (for k = −1 it is the d-dimensional Milne
metric). In addition, the parameter c can be adjusted by rescaling U → c0U,V → V/c0, so
we choose c = 2. One then finds that the (d + 1)-metric (2.13) is

ds2
d+1 = k dr2 + r2 d	2

k − k dz2, (3.8)

where

rd−2 = 2τ. (3.9)
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ε=−1

ε=+1

ε=+1

ε=−1 UV

(a)
ε=−1

ε=+1

ε=+1

ε=−1
V U

(b)

ε=−1

ε=+1

ε=+1

ε=−1
UV

(c) ε=−1

ε=+1

ε=+1

ε=−1 UV

(d)

Figure 1. Generic trajectories for k = 1 and m � 0: (a) � = 0, (b) � > 0 and m = 0,
(c) 0 < m� < 3, (d ) m� > 3. The behaviour near U = 0 is determined by k and m while the
asymptotics depend on �.

For either sign of k, this is just a flat metric on (d + 1)-dimensional Minkowski space. Thus the
spacetime singularity at the Milne superspace horizon lifts in this case to a mere coordinate
singularity at r = 0.

Let us now consider the less trivial case of m �= 0. We shall assume that m > 0 and
c > 0 since the other cases are entirely analogous. For k = 1 the straight-line trajectory
originates at τ = −∞ in the Rindler patch U < 0, V > 0, where we must choose ε = 1, so
this part of the trajectory corresponds to an instanton solution. When the straight line crosses
the U = 0 horizon it enters the Milne patch, where we must choose ε = −1, so this part of the
trajectory corresponds to a cosmological solution. Finally, the straight line passes through the
V = 0 horizon to enter the other Rindler patch (U > 0, V < 0) where we must again choose
ε = 1. So this part of the trajectory describes another instanton solution. This is illustrated in
figure 1(a). For k = −1 we again have three solutions corresponding to three pieces of
the straight line but now two are cosmologies and one an instanton; the instanton mediates
between a collapsing big crunch universe and an expanding big bang universe.

Thus a single straight-line trajectory comprises one cosmology and two instantons (for
k = 1) or one instanton and two cosmologies (for k = −1), all three of which lift, via the
formula (2.13), to the Lorentzian-signature (d + 1)-metric:

ds2
d+1 = − 4

(d − 2)2

U

V
(U 2)−(d−3)/(d−2) dτ 2 +

V

U
dz2 + (U 2)1/(d−2) d	k

2. (3.10)



Classical resolution of singularities in dilaton cosmologies 4771

To see how this metric incorporates all three of the d-dimensional cosmology/instanton
solutions, we must consider how it looks in the various sectors of the U,V -plane through
which a straight-line trajectory passes. For sectors with U > 0 we may use the coordinate r
defined in (3.9), and we again set c = 2, in which case the (d + 1)-metric becomes

ds2
d+1 = h(r)−1 dr2 − h(r) dz2 + r2 d	k

2, (3.11)

with

h(r) ≡ −V

U
= k − m

rd−2
. (3.12)

For sectors with U < 0, and again for c = 2, we may introduce a new coordinate ρ by setting
2τ = −ρd−2, in which case the (d + 1)-metric becomes

ds2
d+1 = g(ρ)−1 dρ2 − g(ρ) dz2 + ρ2 d	k

2, (3.13)

with

g(ρ) = k +
m

ρd−2
. (3.14)

Now consider the k = 1 case, for which d	k
2 = d
2

d−1 (the SO(d)-invariant metric on
the unit (d − 1)-sphere). In this case, the metric (3.11) is just the Schwarzschild black hole
in d + 1 dimensions with mass proportional to m. This comprises the interior of the black
hole (V > 0) and the exterior (V < 0). Therefore the interior of the black hole describes
the cosmology part of the trajectory (similar to [9]) and the exterior describes one of the two
instanton parts of the trajectory. The other instanton part of the trajectory lifts to the k = 1
case of the metric (3.13), which is just Schwarzschild (d + 1)-metric with a negative mass
(proportional to −m). Thus, the three pieces of a single k = 1 straight-line trajectory in the
2D Minkowski ‘superspace’ correspond to cosmological/instanton solutions that lift to the
following three (d + 1)-dimensional Lorentzian-signature spacetimes:

• negative mass Schwarzschild black hole;
• interior of positive mass Schwarzschild black hole;
• exterior of positive mass Schwarzschild black hole.

The situation for k = −1 is analogous, but now d	k = dH 2
d−1 where dH 2

d−1 is the
SO(1, d − 1)-invariant metric on the unit radius (d − 1)-hyperboloid. For example, the big
bang cosmology lifts to the (d + 1)-metric

ds2
d+1 = −

(
1 +

m

rd−2

)−1
dr2 +

(
1 +

m

rd−2

)
dz2 + r2 dH 2

d−1. (3.15)

Clearly, the coordinate r is now a time coordinate, and the metric is asymptotic at late times
to the product of a d-dimensional Milne universe with a circle. There is a big bang singularity
at r = 0, which is a curvature singularity of the metric. Thus, the big bang singularity of
the d-dimensional metric is not resolved in the higher dimension (although the trajectory in
‘superspace’ passes smoothly through it). In contrast, the big crunch lifts to the horizon of the
(d + 1)-metric

ds2
d+1 = −

(
1 − m

ρd−2

)−1

dρ2 +

(
1 − m

ρd−2

)
dz2 + ρ2 dH 2

d−1. (3.16)

The ‘exterior’ spacetime (ρd−2 > m) corresponds to the d-dimensional big crunch cosmology
while the interior (ρd−2 < m) corresponds to the d-dimensional instanton.

It should be appreciated that the asymmetry between the big bang and big crunch
singularities, for either sign of k, is due to an asymmetry in the formula (2.13) used to lift the
cosmology/instanton solutions to one higher dimension, and is not an intrinsic feature of the



4772 E A Bergshoeff et al

d-dimensional solutions. In fact, there are two formulae that yield the same d-dimensional
action; one is related to the other by an interchange of U and V or, equivalently, by a flip of
sign of the dilaton, which is a symmetry of the � = 0 action. If the other formula is used to
lift to d + 1 dimensions then one finds that the black hole horizon and the curvature singularity
behind the horizon are exchanged, so either singularity can be resolved by an appropriate lift8.

3.2. Cyclic cosmologies (γ = 2)

We now set γ = 2 in (3.1) to get the action

I = −2(d − 1)

∫
dλ{∂λŨ∂λṼ + εkŨ Ṽ }, (3.17)

where, according to the earlier discussion, we have replaced the variables (U, V ) by (Ũ , Ṽ )

and the independent variable τ by λ. The equations of motion are

∂2
λŨ = εkŨ, ∂2

λṼ = εkṼ , (3.18)

and the zero-energy constraint is

∂λŨ∂λṼ = εkŨ Ṽ . (3.19)

For εk = −1 we get cyclic universes, as described in [2]. The solutions are

Ũ = Ũ 0 sin λ, Ṽ = Ṽ0 cos λ. (3.20)

for constants (Ũ 0, Ṽ0). A single cycle comprises four segments, joined smoothly across the
Milne horizon at Ũ Ṽ = 0, one in each of the following four segments of the 2D Minkowski
analytic continuation of the 2D Milne wedge:

I : Ũ > 0, Ṽ > 0 II : Ũ > 0, Ṽ < 0

III : Ũ < 0, Ṽ < 0 IV : Ũ < 0, Ṽ > 0.
(3.21)

Using (3.2), and relation (3.3), we can make contact with the straight-line solutions of
the previous subsection. Firstly, for the cyclic universe solution (3.20) relation (3.3) can be
integrated to give

τ = − 1
2εŨ 0Ṽ0 sin2(λ). (3.22)

Recalling that kε = −1 for the cyclic universe, we then deduce from (3.2) that the parameters
c,m of the corresponding γ = 1 straight-line solutions (3.7) are

m = ∓Ṽ 2
0 , c = ∓2Ũ 0

Ṽ0
. (3.23)

This yields

U = ±εŨ 0
2 sin2(λ), V = ∓Ṽ0

2 cos2(λ). (3.24)

Note that the slope of the straight line depends on ε: upon crossing the Milne horizon there
is a ‘kink’ in the line. In this way, the elliptical trajectory in the (Ũ , Ṽ )-plane is mapped to
a parallelogram with equal sides, i.e., a rhombus, in the (U, V )-plane. The slope of the sides
depends on the ratio Ũ 0

2
/
Ṽ0

2, which determines the eccentricity of the γ = 2 ellipse, with a
circle mapping to a square. This is a concrete illustration of how a trajectory that is smooth
for one choice of γ may have derivative discontinuities at the Milne horizon for some other
value of γ .

8 Note, however, that the φ → −φ symmetry of the action that allows for this does not extend to the full IIA
supergravity action, nor to the case of non-zero �.
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Let us now investigate how the cyclic solutions look in d + 1 dimensions. Using the
formula (2.13), we get

ds2
d+1 = ε

(
1 − Ũ 2

0

rd−2

)
dy2 − ε

(
1 − Ũ 2

0

rd−2

)−1

dr2 + r2 d	2
k , (3.25)

where

y = Ṽ0

Ũ 0
z, rd−2 = Ũ 2

0 sin2 λ. (3.26)

Each cosmology phase of the cycle has ε = −1 and therefore k = 1, so it lifts to the interior
of a Schwarzschild black hole, as in the previous subsection. These are the segments of the
ellipse lying on the Milne patches with Ũ Ṽ > 0. Each instanton phase of the cycle has ε = 1
and therefore k = −1. It lifts to

ds2
d+1 =

(
1 − Ũ 2

0

rd−2

)
dy2 −

(
1 − Ũ 2

0

rd−2

)−1

dr2 + r2 dH 2
d−1. (3.27)

This is equivalent to (3.16) with m = Ũ 2
0.

Let us now follow a cycle as λ is varied from 0 to 2π . At λ = 0 (Ũ = 0) we have a big
bang singularity, which lifts to the curvature singularity at r = 0 of the d + 1 black hole. The
universe expands and then collapses to a big crunch singularity at λ = π/2 (Ṽ = 0), which
lifts to the horizon of the d + 1 black hole at rd−2 = Ũ 2

0. For λ ∈ (
π
2 , π

)
the solution lifts to

(3.27). Note, however, that the (d + 1)-metric changes discontinuously across the horizon; this
can be seen from the fact that the near horizon geometry of the black hole differs from the near
horizon geometry of the solution (3.27) because the (d − 1)-sphere of the former becomes a
(d − 1)-hyperboloid of the latter. Thus, in contrast to the γ = 1 case, the trajectories that are
smooth for γ = 2 do not lift to solutions in the higher dimension that are smooth across a
horizon. This makes the higher dimension interpretation of cyclic cosmologies problematic,
and indicates a ‘higher dimensional preference’ for the Milne geodesics that we found for
γ = 1.

If we put this difficulty aside and continue with the cycle, then we approach the curvature
singularity (at r = 0) of the solution (3.27) as λ increases to π . Passing through λ = π , we
arrive at the second cosmological phase of the cycle, with λ ∈ (π, 3π/2), described again
in d + 1 dimensions by the interior of the black hole. Passing again through a big crunch
singularity at λ = 3π/2 we come to the second instanton phase, in the interval λ ∈ (

3π
2 , 2π

)
,

which again lifts to the d + 1-metric (3.27).

4. Uplift to (anti-)de Sitter Schwarzschild

Although cosmological trajectories of the � �= 0 models considered in this paper can be
understood qualitatively for any value of the constant a, there is only one other value for which
exact solutions can be readily found (leaving aside the a = 0 case, which we discuss in the
following section). This is because there is only one value of a for which the equations of
motion for U and V separate. From (2.9) it can be seen that the potential terms depend only
on U iff

γ = 1, 2α2γ − 1 = αγ a, (4.1)

which together require that

a =
√

2

(d − 1)(d − 2)
. (4.2)
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The effective action (2.9) in this case is

I = −1

2
(d − 1)

∫
dτ

{
U̇ V̇ − 4k +

4�

(d − 1)(d − 2)
(U 2)1/(d−2)

}
. (4.3)

The field equations are now

Ü = 0, V̈ = 8�(U 2)1/(d−2)

(d − 1)(d − 2)2U
, (4.4)

and the zero-energy constraint is

U̇ V̇ = −4k +
4�(U 2)1/(d−2)

(d − 1)(d − 2)
. (4.5)

The most general solution is the curve

U = cτ, V = −4kτ

c
+ m +

4�((cτ)2)1/(d−2)τ

cd(d − 1)
, (4.6)

for constants c,m, as in the special case of � = 0 that we considered in the previous section.
Following the discussion of the uplift to (d + 1) dimensions in that section, we set cτ = rd−2

(in regions with U > 0) to again get the metric

ds2
d+1 = h(r)−1 dr2 − h(r) dz2 + r2 d	k

2, (4.7)

but now with a different function h. Choosing c = 2, one finds that

h(r) = k − m

rd−2
− �

d(d − 1)
r2. (4.8)

For k = 1, this is the (anti-)de Sitter Schwarzschild metric.
A new feature with respect to the � = 0 case is that the de Sitter Schwarzschild metric

that arises for � > 0 has two horizons for sufficiently small non-zero �. When this happens,
the region between the horizons is the lift of an instanton solution which mediates a universe
collapsing to a big crunch singularity and one expanding from a second big bang singularity.
To illustrate this, we consider an example with d = 4 and k = 1. In this case, the d + 1
solution is the five-dimensional de Sitter Schwarzschild black hole with

h(r) = − �

12r2

(
r2 − r2

+

)(
r2 − r2

−
)
, (4.9)

where

r2
± = 6

�

(
1 ±

√
1 − m�

3

)
. (4.10)

There are two horizons for m� < 3. The horizon at r = r− is the black hole horizon, while
r = r+ is the de Sitter cosmological event horizon.

Let us consider the cosmological evolution for the cases: (a) m = 0; (b) 0 < m� < 3;
(c) m� > 3 (see figure 1).

• � = 0. This case was analysed in the previous section. The trajectory is just a straight
line.

• m = 0. In this case, the trajectory passes through the origin U = V = 0 and is symmetric
under (U, V ) → −(U, V ). Starting at negative U and V , we may interpret the trajectory
as representing a contracting universe that collapses through a big crunch singularity into
an instanton phase, which is connected to an isometric instanton phase through the origin
U = V = 0. Then, as the trajectory passes again through the Milne horizon at V = 0 it
becomes an expanding big bang universe, this being the time reverse of the original big
crunch universe.
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• 0 < m� < 3. Starting from the big bang singularity at τ = 0 (U = 0), the universe
expands and then collapses to a big crunch singularity at 2τ = r2

− (V = 0). This evolution
takes place in the future Milne sector (U > 0, V > 0). For 2τ ∈ (

r2
−, r2

+

)
, the trajectory

is in the Rindler region with U > 0, V < 0, and the corresponding solution is therefore
an instanton. This instanton lifts to the d + 1 spacetime between the black hole and de
Sitter horizons. As 2τ increases to r2

+, the trajectory returns to the V = 0 Milne horizon.
Having passed through this horizon, the trajectory is once more in the future Milne sector
and represents a second expanding big bang cosmology. This universe expands forever
and at late times approaches the self-similar universe obtained by dimensional reduction
of the five-dimensional de Sitter universe.

The full trajectory, which is shown in figure 1(c), includes another big crunch to big
bang transition through an instanton that lifts to the interior spacetime of the negative
mass Schwarzschild de Sitter spacetime. The exterior of this spacetime is the lift of a
universe that is collapsing to a big crunch singularity, which lifts to the cosmological
horizon of the negative mass de Sitter Schwarzschild spacetime.

• m� = 3. In this case, the black hole solution becomes the so-called Nariai solution with
the topology dS2 × Sd−1. In the future Milne patch we get a bouncing cosmology where
the singular bouncing point gets resolved into the dS2 part of the Nariai solution.

• m� > 3. The part of the trajectory with U < 0 is similar to the previous case. Starting
from the big bang singularity at τ = 0 (U = 0), the universe first expands but then
collapses to a minimum size, after which it re-expands, beginning a phase of eternal
expansion.

The cases with k = −1 are related to those with k = 1 by flipping the sign of �,m and
V : the evolution is similar with instantons and cosmologies interchanged (since V flips sign).

5. Cosmological constant models (a = 0)

We now allow for non-zero � but set a = 0. In other words, we now consider a cosmological
constant term, of either sign. The effective action (2.9) becomes

I = −1

2
(d − 1)

∫
dτ

{
γ 2U̇ V̇ − 4k(−εUV )γ−1 +

4�

(d − 1)(d − 2)
(−εUV )2α2γ−1

}
. (5.1)

We consider first the case of general d, showing that our prescription for passing through
cosmological singularities leads fairly generically to cyclic universes. We then show how
exact solutions may be found for d = 3 and d = 4.

5.1. Cyclic universes

For a = 0 we have a problem analogous to that of a particle in a central potential. To make
this explicit, we set

U = η e−ψ, V = −εη eψ, U > 0,

U = −η e−ψ, V = εη eψ, U < 0,
(5.2)

to put the action into the form

I = −1

2
(d − 1)ε

∫
dτ

{
γ 2(η̇2 − η2ψ̇2) + 4kεη2(γ−1) − 4ε�

(d − 1)(d − 2)
η4α2γ−2

}
. (5.3)

Let us note here that the relation between the new variables (η, ψ) and the original variables
(ϕ, φ) is

eϕ = η2αγ , φ = 2αγψ, (5.4)
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and that the spacetime metric in terms of η is

ds2
d = 4ε

(d − 2)2
(η2)2α2γ−2 dη2 + (η2)2α2γ /(d−1) d	2

k . (5.5)

The potential term is greatly simplified by the choice γ = 1. Omitting an unimportant
overall factor9, this choice yields the Lagrangian

L = η̇2 − η2ψ̇2 + 4kε − 4ε�

(d − 1)(d − 2)
η2/(d−2). (5.6)

The ψ equation of motion is trivially once-integrated to give

ψ̇ = j

η2
, (5.7)

for some constant j . The η equation is

ηη̈ = −j 2

η2
− 4ε�

(d − 1)(d − 2)2
η2/(d−2). (5.8)

This is trivially once-integrated and the integration constant is fixed by the zero-energy
constraint. This yields the equation10

η̇2 + Veff(η) = 4kε, (5.9)

where

Veff(η) = −j 2

η2
+

4ε�

(d − 1)(d − 2)
η2/(d−2). (5.10)

The cosmological (ε = −1) solutions to this system are well known for j = 0; the dilaton is
constant, and the metric is de Sitter or anti-de Sitter space. In what follows, we assume j �= 0.

Our main interest at present is the possible continuation through a cosmological singularity
to an instanton (ε = 1) solution. As cosmological singularities occur at η = 0, the term
containing the cosmological constant in equation (5.9) is irrelevant near the singularities. It
follows that near a singularity the trajectories are straight lines in the (U, V )-plane, so the
transition through the singularity is exactly the same as in the � = 0 case already discussed.
Away from the singularity, the trajectories are bent by the cosmological constant term and
the global behaviour can be quite different from the � = 0 case. Nevertheless, it can be
understood by examining the behaviour of a particle in the potential Veff(η), noting that the
potential changes across the Milne horizons because of the change in the sign of ε.

Consider first � > 0. For an instanton, the potential is monotonically increasing with
increasing η, going to −∞ at η = 0 and +∞ at η = ∞. So any trajectory will flow to η = 0
and cross the Milne horizon, to yield a big bang cosmology. What happens next depends on
k and �. On the cosmology side of the Milne horizon the potential is everywhere negative
and has a maximum. If this maximum is less than the energy 4kε then η̇ is never zero and
the universe expands forever. This happens when k = −1 for any � > 0 and also for k = 1
provided that

� > �+ = (d − 2)2

(
4

(d − 1)j 2

)1/(d−2)

. (5.11)

If, instead, the maximum is greater than the energy 4kε, which happens when k = 1 and
� < �+, then there will be a recollapse to a big crunch singularity. However, the trajectory

9 This includes a factor of ε, which ensures that there is no factor of ε in the kinetic term in the U,V variables that
cover the full 2D Minkowski space.
10 This equation implies the equation of motion (5.8) except when η̇ ≡ 0, in which case both the constraint and
the η equation of motion are needed.
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η η

ε Λ Λε< 0 > 0
effV

Figure 2. The potential Veff(η) with j �= 0 for both signs of ε�. The variable η is positive on both
sides. A cyclic universe corresponds to a particle in the potential well around η = 0 (with dashed
energy level). Classically it is trapped in the well; quantum mechanically it could tunnel through
the energy barrier to the left region.

will pass straight through the singularity to the region behind the Milne horizon and we will
have a second instanton phase. This instanton trajectory will be bent back to the Milne horizon
at η = 0, yielding a second cosmological phase identical to the first one. Thus we have a
cyclic universe, as is illustrated in figure 2.

A similar analysis applies for � < 0. If k = 1 or if k = −1 with � < �− = −�+,
then we have an instanton phase that yields a big bang cosmology, which recollapses through
a big crunch to another instanton phase. If k = −1 but � > �−, then this process continues
ad infinitum and we have a cyclic universe. Thus cyclic universes are generic in this model.

5.2. Explicit examples

The constraint (5.9) can be written as

dτ = dη√
4kε − Veff(η)

. (5.12)

Using this in (5.5) we have11

ds2
d = 4ε

(d − 2)2

η− 2(d−3)

d−2

[4kε − Veff(η)]
dη2 + η2/(d−2) d	2

k , (5.13)

so that η is now the time variable. The dilaton is given as a function of η by the formula

φ(η) = 2αj

∫ η dx

x2
√

4kε − Veff(x)
. (5.14)

More explicit formulae with τ as the time variable can be obtained for d = 3 and d = 4.
For d = 3 equation (5.9) becomes

η̇2 = 4kε +
j 2

η2
− 2ε�η2. (5.15)

11 Related solutions have appeared in the literature (see, e.g., [10]). Here our main interest is the fact that there exist
smooth transitions through the Milne horizon connecting instanton and cosmology solutions.
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Setting

y = η2 − k

�
and b = k2

�2
+

j 2

2ε�
, (5.16)

this equation becomes

ẏ2 = −8ε�(y2 − b). (5.17)

This can be easily solved, and the solutions for the different cases are as follows,

• �ε < 0

η2 =
√

b cosh(
√−8�ε(τ − τ0)) +

k

�
for b > 0,

η2 = √−b sinh(
√−8�ε(τ − τ0)) +

k

�
for b < 0,

(5.18)

where τ0 is an integration constant. For b > 0 with k/� > 0, the domain of validity for
τ is (−∞,∞). For the rest of the cases, τ0 are chosen such that the domain of validity is
(0,∞).

• �ε > 0

η2 =
√

b sin(
√

8�ε(τ − τ0)) +
k

�
. (5.19)

Since, by definition,
√

b > k/� for j �= 0, there is always a non-zero domain of validity
for this solution.

Note that in this case of d = 3 the time τ coincides with the FLRW cosmic time t, as can
be seen from equation (2.12) using α = 1 and γ = 1, and η(τ) is the FLRW scale factor.

In the case of d = 4, equation (5.8) becomes

ηη̇ =
√

j 2 + 4kεη2 − 2
3ε�η3. (5.20)

The solution η(τ) can be expressed in terms of elliptic functions but the explicit formula is
not illuminating and we omit it.

6. Flat universes (k = 0)

In this section, we consider flat universes (k = 0) for which the solutions are known exactly for
any value of a [5–7]. Here we present these solutions as straight lines in a 2D Minkowski space,
and consider the continuation through the cosmological singularities at the Milne horizon.

Going back to our original scalars φ and ϕ, the k = 0 effective action reads

I =
∫

dτ

{
1

2
f −1ε(ϕ̇2 − φ̇2) − f � e2αϕ−aφ

}
. (6.1)

It is convenient to introduce the quantity

� = a2 − 4α2, (6.2)

because this is invariant under SO(1, 1) rotations of (ϕ, φ). We will assume initially that
� �= 0, in which case we may define s by s = sign(�). We now define new variables (ζ, ξ)

by means of an SO(1, 1) rotation:(
ζ

ξ

)
= 1√|�|

(
2α −a

−a 2α

)(
ϕ

φ

)
. (6.3)
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This brings the action (6.1) to the form

I =
∫

dτ

{
1

2
f −1sε(ζ̇ 2 − ξ̇ 2) − f � e

√|�|ζ
}

. (6.4)

By analogy with (2.6) we choose new coordinates (U,V)

eζ = (−εUV)αγ , eξ =
(

−εV
U

)αγ

, (6.5)

and we fix the time-reparametrization invariance by the choice

f = 2α2γ 2

sεUV
. (6.6)

The action becomes

I =
∫

dτ {U̇ V̇ + 2α2γ 2s�(−εUV)αγ
√|�|−1}, (6.7)

and the f equation of motion of (6.4) becomes the constraint

U̇ V̇ = 2α2γ 2s�(−εUV)αγ
√|�|−1. (6.8)

With the choice γ = 1/(α
√|�|), the solutions to the field equations satisfying the constraint

are the straight lines12

U = cτ, V = 2s�

c|�|τ + m. (6.9)

In order to find the general metric and dilaton solution explicitly, we need to express U,V

appearing in equation (2.11) in terms of U,V . Using equations (2.6), (6.3) and (6.5), we find
that

U2 = (U 2)
2α+a√|�| , V2 = (V 2)

2α−a√|�| . (6.10)

The analysis of the continuation through the Milne horizon in the (U,V) space is similar
to the discussion of the � = 0 case in section 3. The role of k in that section is played here by
−α2s�/2 (which, however, need not be ±1). Consequently, the full straight line trajectory
consists of cosmological and instanton phases.

The case � = 0, i.e., a = 2α, must be treated separately. We choose γ = 1/α2 and we
define new coordinates (U, v) by

eϕ = (εU)1/α ev, eφ = (εU)−1/α ev. (6.11)

In the (U, v)-plane, the regions with U < 0 represent cosmologies, while the regions with
U > 0 represent instantons.

The gauge choice

f = 2

αεU
, (6.12)

yields the following action,

I = ε

∫
dτ

{
U̇ v̇ − 2�

α

}
, (6.13)

and the additional constraint

U̇ v̇ = −2�

α
. (6.14)

Again we have straight lines in the (U, v)-plane, but now cosmological singularities occur at
points at which the trajectory crosses U = 0. As every trajectory crosses U = 0 once, every
trajectory has one instanton and one cosmology phase.
12 Note that the choice γ = 2/(α

√|�|) also gives rise to linear field equations. In this case, for sε� > 0, the solution
to the field equations will be a segment of an ellipse, but a smooth continuation through the Milne horizon would
require changing the sign of s�, which is not possible because s and � are parameters of the model.
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7. Discussion

In this paper, we have investigated the possibility of a classical resolution of cosmological
singularities in a class of d-dimensional models with a dilaton field φ and a possible exponential
potential of the form � e−aφ . In these models, a FLRW cosmology corresponds to a trajectory
in a 2D Minkowski ‘superspace’ but with a Milne metric in the parametrization provided by the
dilaton φ and the cosmological scale factor eϕ . In terms of null Minkowski coordinates (U, V )

these fields cover only the Milne patches, for which UV > 0. Cosmological singularities
correspond to points on trajectories that cross the Milne horizon at UV = 0. Although the
d-dimensional spacetime metric is singular, the cosmological trajectory can cross the Milne
horizon smoothly, and the continuation of the trajectory into the Rindler region behind the
Milne horizon represents an instanton solution of the Euclidean action. Thus, a trajectory
that starts in a Milne region, smoothly crosses to a Rindler region and then returns to a
Milne region, represents a big crunch–big bang transition mediated by an instanton phase.
Globally, the trajectories may be open curves that represent a solution with a finite number of
cosmology/instanton phases, or closed curves that represent cyclic universes.

These results complement our earlier study of cosmology/instanton transitions in models
of gravity coupled to scalar fields with a hyperbolic target space [2]. Indeed, for � = 0, the
model we considered is a consistent truncation of the model of [2] to purely Einstein-dilaton
system. However, an important aspect of the truncated theory considered here is that its action
is the dimensional reduction of the Einstein–Hilbert action in one higher dimension. This
is true not only for the standard metric/dilaton action, for a Lorentzian-signature metric, but
also for the Euclidean action, which is obtained by considering a time-independent metric in
the higher dimension. Thus, the cosmology/instanton solutions lift to solutions of Einstein’s
equations in one higher dimension. For k = 1 a cosmology/instanton solution corresponding
to a straight line trajectory in the 2D Minkowski space passes through both Rindler patches and
either the future or past Milne patch of this space; the full trajectory therefore comprises three
segments. The cosmological solution corresponding to the segment in the Milne patch lifts to
the interior of a (positive mass) Schwarzschild black hole, while the pre-big bang and post-big
crunch instanton solutions corresponding to the segments in the Rindler patches lift either to
the exterior of the same black hole solution or to the negative mass Schwarzschild spacetime
found by reversing the sign of the black hole mass. All three of these higher dimensional
spacetimes (for given mass) become part of the same cosmology/instanton solution in one
dimension lower. In particular, the black hole horizon becomes either the big bang or the big
crunch singularity of the lower dimensional cosmology, depending on which of two possible
dimensional-reduction ansätze is used, the two ansätze being related by a change of sign of
the dilaton13.

Motivated in part by massive IIA supergravity, for which the dilaton has a positive
exponential potential, we also considered the effect of an exponential dilaton potential
parametrized by a constant a, such that a = 0 corresponds to a constant potential (i.e., a
cosmological constant). For given d there is one value of a for which exact cosmology/

instanton solutions can be found for any k; namely, the value for which the action is the
reduction of gravity with a cosmological constant in one higher dimension. These solutions lift
to de Sitter Schwarzschild (for positive cosmological constant) or anti-de Sitter Schwarzschild
(for negative cosmological constant). The de Sitter Schwarzschild case is particularly

13 An interesting corollary is a means of resolving the curvature singularity of the Schwarzschild solution: reduction
by one dimension followed by a change of sign of the dilaton and a lift back to the higher dimension interchanges the
positive and negative mass Schwarzschild solutions and also interchanges the black hole horizon with the curvature
singularity behind the horizon.
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interesting because of the occurrence (for sufficiently small positive black hole mass) of two
horizons, the black hole horizon and the cosmological event horizon. These horizons are the
lift, respectively, of a big crunch and big bang singularity on a trajectory that crosses and then
recrosses the Milne horizon of the 2D Minkowski ‘superspace’. The region behind the Milne
horizon is described by a d-dimensional instanton solution mediating the big crunch to big
bang transition, and this lifts to the (d + 1)-dimensional spacetime between the black hole and
cosmological horizons. Thus, the entire big crunch to big bang transition via a cosmological
instanton lifts to a non-singular spacetime in one higher dimension! The uniqueness of the
analytic continuation of the (d +1)-dimensional spacetime through its horizons is evidence for
the correctness of our prescription for the continuation of cosmological trajectories through
their singularities. Moreover, since the horizons remain regular when small perturbations
about spherical symmetry are included, this suggests that it may be possible to extend our
prescription for continuation through cosmological singularities to more general cosmologies
which are not homogeneous and isotropic.
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