579 research outputs found

    Modelling the influence of shielding on physical and biological organ doses.

    Get PDF
    Distributions of "physical" and "biological" dose in different organs were calculated by coupling the FLUKA MC transport code with a geometrical human phantom inserted into a shielding box of variable shape, thickness and material. While the expression "physical dose" refers to the amount of deposited energy per unit mass (in Gy), "biological dose" was modelled with "Complex Lesions" (CL), clustered DNA strand breaks calculated in a previous work based on "event-by-event" track-structure simulations. The yields of complex lesions per cell and per unit dose were calculated for different radiation types and energies, and integrated into a version of FLUKA modified for this purpose, allowing us to estimate the effects of mixed fields. As an initial test simulation, the phantom was inserted into an aluminium parallelepiped and was isotropically irradiated with 500 MeV protons. Dose distributions were calculated for different values of the shielding thickness. The results were found to be organ-dependent. In most organs, with increasing shielding thickness the contribution of primary protons showed an initial flat region followed by a gradual decrease, whereas secondary particles showed an initial increase followed by a decrease at large thickness values. Secondary particles were found to provide a substantial contribution, especially to the biological dose. In particular, the decrease of their contribution occurred at larger depths than for primary protons. In addition, their contribution to biological dose was generally greater than that of primary protons

    heavy ion effects from track structure to dna and chromosome damage

    Get PDF
    The use of carbon ions for the treatment of certain tumour types, especially radioresistant tumours, is becoming more frequent due to the carbon- ion dose localization and high relative biological effectiveness (RBE) in the Bragg peak region. Human beings can also be exposed to heavy ions in space, since galactic cosmic rays are a mixed field consisting of not only high-energy protons and He ions, but also heavier ions including iron. Due to their high linear energy transfer (LET), heavy ions have peculiar track structures, characterized by a high level of energy deposition clustering. Furthermore, high-energy ions produce energetic secondary electrons ('delta rays') which can give rise to energy depositions several micrometres away from the core of the primary particle track. Also in view of hadron therapy and space radiation applications, it is therefore important to characterize heavy-ion tracks from a physical and biophysical point of view. In this framework, herein we will discuss the main physical features of heavy-ion track structure, as well as heavy-ion-induced DNA double-strand breaks, which are regarded as one of the most important initial radiobiological lesions and chromosome aberrations, which are correlated both with cell death and with cell conversion to malignancy

    Oxidative Stress Markers to Investigate the Effects of Hyperoxia in Anesthesia

    Get PDF
    Oxygen (O-2) is commonly used in clinical practice to prevent or treat hypoxia, but if used in excess (hyperoxia), it may act as toxic. O-2 toxicity arises from the enhanced formation of Reactive Oxygen Species (ROS) that exceed the antioxidant defenses and generate oxidative stress. In this study, we aimed at assessing whether an elevated fraction of inspired oxygen (FiO(2)) during and after general anesthesia may contribute to the unbalancing of the pro-oxidant/antioxidant equilibrium. We measured five oxidative stress biomarkers in blood samples from patients undergoing elective abdominal surgery, randomly assigned to FiO(2) = 0.40 vs. 0.80: hydroperoxides, antioxidants, nitrates and nitrites (NOx), malondialdehyde (MDA), and glutathionyl hemoglobin (HbSSG). The MDA concentration was significantly higher 24 h after surgery, and the body antioxidant defense lower, in the FiO(2) = 0.80 group with respect to both the FiO(2) = 0.40 group and the baseline values (p <= 0.05, Student's t-test). HbSSG in red blood cells was also higher in the FiO(2) = 0.80 group at the end of the surgery. NOx was higher in the FiO(2) = 0.80 group than the FiO(2) = 0.40 group at t = 2 h after surgery. MDA, the main end product of the peroxidation of polyunsaturated fatty acids directly influenced by FiO(2), may represent the best marker to assess the pro-oxidant/antioxidant equilibrium after surgery

    Tritiated Steel Micro-Particles: Computational Dosimetry and Prediction of Radiation-Induced DNA Damage for In Vitro Cell Culture Exposures.

    Get PDF
    Biological effects of radioactive particles can be experimentally investigated in vitro as a function of particle concentration, specific activity and exposure time. However, a careful dosimetric analysis is needed to elucidate the role of radiation emitted by radioactive products in inducing cyto- and geno-toxicity: the quantification of radiation dose is essential to eventually inform dose-risk correlations. This is even more fundamental when radioactive particles are short-range emitters and when they have a chemical speciation that might further concur to the heterogeneity of energy deposition at the cellular and sub-cellular level. To this aim, we need to use computational models. In this work, we made use of a Monte Carlo radiation transport code to perform a computational dosimetric reconstruction for in vitro exposure of cells to tritiated steel particles of micrometric size. Particles of this kind have been identified as worth of attention in nuclear power industry and research: tritium easily permeates in steel elements of nuclear reactor machinery, and mechanical operations on these elements (e.g., sawing) during decommissioning of old facilities can result in particle dispersion, leading to human exposure via inhalation. Considering the software replica of a representative in vitro setup to study the effect of such particles, we therefore modelled the radiation field due to the presence of particles in proximity of cells. We developed a computational approach to reconstruct the dose range to individual cell nuclei in contact with a particle, as well as the fraction of "hit" cells and the average dose for the whole cell population, as a function of particle concentration in the culture medium. The dosimetric analysis also provided the basis to make predictions on tritium-induced DNA damage: we estimated the dose-dependent expected yield of DNA double strand breaks due to tritiated steel particle radiation, as an indicator of their expected biological effectiveness

    Modelling the radiation action for the estimation of biological effects in humans

    Get PDF
    It is well known that ionizing radiation can induce biological effects at different levels, from DNA, chromosomes and cells up to tissues, organs and entire organisms. Theoretical models and Monte Carlo codes, especially those based on radiation track structure, can be of great help to elucidate the underlying mechanisms and to perform reliable predictions where data are lacking. In this work we will present and discuss a mechanistic ab initio model and a Monte Carlo code able to simulate the induction of chromosome aberrations (CAs) in human cells. This endpoint is particularly relevant, since some aberration types can lead to cell death, while others can lead to cell conversion to malignancy. The model is based on the hypothesis that only clustered lesions (CLs) of the DNA double-helix can evolve into aberrations. Simulated dose-response curves for CAs induced by different radiation types (including heavy ions) will be shown, together with applications to cancer risk estimation and biodosimetry. In this framework, we will also discuss examples of medical applications - including astronauts' exposure to space radiation - obtained with the FLUKA code, also taking into account the role of nuclear interactions

    Emx2 is a dose-dependent negative regulator of Sox2 telencephalic enhancers.

    Get PDF
    The transcription factor Sox2 is essential for neural stem cells (NSC) maintenance in the hippocampus and in vitro. The transcription factor Emx2 is also critical for hippocampal development and NSC self-renewal. Searching for 'modifier' genes affecting the Sox2 deficiency phenotype in mouse, we observed that loss of one Emx2 allele substantially increased the telencephalic β-geo (LacZ) expression of a transgene driven by the 5' or 3' Sox2 enhancer. Reciprocally, Emx2 overexpression in NSC cultures inhibited the activity of the same transgene. In vivo, loss of one Emx2 allele increased Sox2 levels in the medial telencephalic wall, including the hippocampal primordium. In hypomorphic Sox2 mutants, retaining a single 'weak' Sox2 allele, Emx2 deficiency substantially rescued hippocampal radial glia stem cells and neurogenesis, indicating that Emx2 functionally interacts with Sox2 at the stem cell level. Electrophoresis mobility shift assays and transfection indicated that Emx2 represses the activities of both Sox2 enhancers. Emx2 bound to overlapping Emx2/POU-binding sites, preventing binding of the POU transcriptional activator Brn2. Additionally, Emx2 directly interacted with Brn2 without binding to DNA. These data imply that Emx2 may perform part of its functions by negatively modulating Sox2 in specific brain areas, thus controlling important aspects of NSC function in development

    Redox Imbalance in Neurological Disorders in Adults and Children

    Get PDF
    Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies
    corecore