246,367 research outputs found

    Mathematical and computer modeling of electro-optic systems using a generic modeling approach

    Get PDF
    The conventional approach to modelling electro-optic sensor systems is to develop separate models for individual systems or classes of system, depending on the detector technology employed in the sensor and the application. However, this ignores commonality in design and in components of these systems. A generic approach is presented for modelling a variety of sensor systems operating in the infrared waveband that also allows systems to be modelled with different levels of detail and at different stages of the product lifecycle. The provision of different model types (parametric and image-flow descriptions) within the generic framework can allow valuable insights to be gained

    Mapping warm molecular hydrogen with Spitzer's Infrared Array Camera (IRAC)

    Full text link
    Photometric maps, obtained with Spitzer's Infrared Array Camera (IRAC), can provide a valuable probe of warm molecular hydrogen within the interstellar medium. IRAC maps of the supernova remnant IC443, extracted from the Spitzer archive, are strikingly similar to spectral line maps of the H2 pure rotational transitions that we obtained with the Infrared Spectrograph (IRS) instrument on Spitzer. IRS spectroscopy indicates that IRAC Bands 3 and 4 are indeed dominated by the H2 v=0-0 S(5) and S(7) transitions, respectively. Modeling of the H2 excitation suggests that Bands 1 and 2 are dominated by H2 v=1-0 O(5) and v=0-0 S(9). Large maps of the H2 emission in IC433, obtained with IRAC, show band ratios that are inconsistent with the presence of gas at a single temperature. The relative strengths of IRAC Bands 2, 3, and 4 are consistent with pure H2 emission from shocked material with a power-law distribution of gas temperatures. CO vibrational emissions do not contribute significantly to the observed Band 2 intensity. Assuming that the column density of H2 at temperatures T to T+dT is proportional to T raised to the power -b for temperatures up to 4000 K, we obtained a typical estimate of 4.5 for b. The power-law index, b, shows variations over the range 3 to 6 within the set of different sight-lines probed by the maps, with the majority of sight-lines showing b in the range 4 to 5. The observed power-law index is consistent with the predictions of simple models for paraboloidal bow shocks.Comment: 27 pages, including 11 figures. Accepted for publication in Ap

    Extended Emission from Cygnus X-3 Detected with Chandra

    Full text link
    We have discovered extended X-ray emission from the microquasar Cyg X-3 in archival Chandra X-ray Observatory observations. A 5" wide structure lies approximately 16" to the NE from the core point source and may be extended in that direction. This angular scale corresponds to a physical extent of roughly 0.8 lyr, at a distance of 2.5 lyr from Cyg X-3 (assuming a 10 kpc distance). The flux varied by a factor of 2.5 during the four months separating two of the observations, indicating significant substructure. The peak 2-10 keV luminosity was about 5e34 ergs/s. There may also be weaker, extended emission of similar scale oppositely directed from the core, suggesting a bipolar outflow. This structure is not part of the dust scattering halo, nor is it caused by the Chandra point spread function. In this Letter we describe the observations and discuss possible origins of the extension.Comment: Submitted to ApJ Letters. 5 pages, 2 figures (1 color). Uses emulateap

    Performance of semi-transportation-cooled liner in high-temperature-rise combustors

    Get PDF
    Results from tests with the Lamilloy combustor liner are compared with results obtained from a conventionally designed, film cooled, step-louver liner. Operation of the Lamilloy liner with counterrotating swirl combustor fuel modules with mixing venturis was possible to a fuel-air ratio of 0.065 without obtaining excessive liner metal temperatures. At the 0.065 fuel-air condition the average liner metal temperature was 140 K and the maximum local temperature 280 K above the inlet air temperature. Combustion efficiency, pattern factor, and smoke data are discussed

    XTE J1739-302 as a Supergiant Fast X-ray Transient

    Full text link
    XTE J1739-302 is a transient X-ray source with unusually short outbursts, lasting on the order of hours. Here we give a summary of X-ray observations we have made of this object in outburst with the Rossi X-ray Timing Explorer (RXTE) and at a low level of activity with the Chandra X-ray Observatory, as well as observations made by other groups. Visible and infrared spectroscopy of the mass donor of XTE J1739-302 are presented in a companion paper. The X-ray spectrum is hard both at low levels and in outburst, but somewhat variable, and there is strong variability in the absorption column from one outburst to another. Although no pulsation has been observed, the outburst data from multiple observatories show a characteristic timescale for variability on the order of 1500-2000 s. The Chandra localization (right ascension 17h 39m 11.58s, declination -30o 20' 37.6'', J2000) shows that despite being located less than 2 degrees from the Galactic Center and highly absorbed, XTE J1739-302 is actually a foreground object with a bright optical counterpart. The combination of a very short outburst timescale and a supergiant companion is shared with several other recently-discovered systems, forming a class we designate as Supergiant Fast X-ray Transients (SFXTs). Three persistently bright X-ray binaries with similar supergiant companions have also produced extremely short, bright outbursts: Cyg X-1, Vela X-1, and 1E 1145.1-6141.Comment: 16 pages, 7 figures, 2 tables, in press in The Astrophysical Journal; see also the companion paper by Negueruela et a

    Mapping the secondary star in QQ Vulpeculae

    Get PDF
    We present high- and medium-resolution phase-resolved far-red spectra of the magnetic cataclysmic variable QQ Vul. The spectra show the Na i doublet absorption features near λ 8190 Å from the cool secondary star, and the lines of He ii, O i, Mg ii, C i, N i, Ca ii and Paschen in emission. Using a Doppler imaging technique, we find that the H i, He ii, C i and O i lines have a narrow component originating near the L1 point and a strong component from the stream, while the Mg ii and Ca ii emission arises solely from the illuminated hemisphere of the red dwarf. We carry out an exhaustive analysis of the emission- and absorption-line velocities and fluxes seen in the QQ Vul spectrum. By simultaneously fitting the radial velocity and flux information we are able to produce surface maps of each line on the secondary star using a technique analogous to the one employed by Davey. The Na i and Mg ii maps show an asymmetric distribution akin to that seen in AM Her. Although the observed velocity semi-amplitudes (K2) of the lines can potentially be corrected for the effects of irradiation, we find that time-dependent changes in the degree of heating on the secondary can lead to large discrepancies in the results, significant enough to give inconsistent values from data taken at different epochs. We discuss the limitations of the surface mapping method as a means of correcting the observed K2. Our results also suggest that the emission features from the red dwarf are likely to be formed at quite high levels of the stellar chromosphere, in some cases probably even beyond the L1 point and inside the Roche lobe of the white dwarf, with the different lines possibly forming at different depths. Using the Na i absorption doublet, we find a velocity semi-amplitude for the secondary star of K2=219±6 km s−1 and a projected rotational velocity of vrot sin i=110±15 km s−1. Thus we estimate the mass ratio to be q=0.54±0.14. Based on the results of the best-fitting surface maps on all the lines, and the nature of the phase-dependent variations of the continuum and lines, we infer a binary inclination of i=65°±7°, and obtain a complete set of binary parameters for QQ Vul. We classify the secondary star as M4V from the TiO band ratios

    Adjustable high emittance gap filler

    Get PDF
    A flexible, adjustable refractory filler is disclosed for filling gaps between ceramic tiles forming the heat shield of a space shuttle vehicle, to protect its aluminum skin during atmospheric reentry. The easily installed and replaced filler consists essentially of a strip of ceramic cloth coated, at least along both its longitudinal edges with a room temperature vulcanizable silicone rubber compound with a high emittance colored pigment. The filler may have one or more layers as the gap width requires. Preferred materials are basket weave aluminoborosilicate cloth, and a rubber compounded with silicon tetraboride as the emittance agent and finely divided borosilicate glass containing about 7.5% B2O3 as high temperature binder. The filler cloth strip or tape is cut to proper width and length, inserted into the gap, and fastened with previously applied drops of silicone rubber adhesive
    • …
    corecore