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Abstract 

Groups of yearling sheep were trickle infected with Teladorsagia circumcincta for 8 weeks, 

then the infection cleared with anthelmintic and both these animals and a group of parasite 

naïve sheep were challenged with 50 000 infective T. circumcincta larvae. The previously 

infected sheep demonstrated acquired immunity to the parasite, manifested by reduced worm 

burdens which were evident as early as 2 days after challenge. Cannulation of the common 

efferent gastric lymph duct allowed the kinetics of their local cell traffic to be monitored, and 

the phenotype of these lymphocytes was analysed. A blast cell response, consisting of both T 

and B lymphocytes, was observed in both groups of sheep, however this occurred more 

rapidly in the previously infected, immune animals. CD4+, CD8+ and CD25+ blast cell 

output peaked at day 3 in the previously infected animals, whereas CD21+ blast cell output 

peaked slightly later at day 5. In the control group the peak output of all phenotypes of blast 

cells occurred more slowly, peaking 10 days after infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Teladorsagia circumcincta is an abomasal nematode parasite of sheep, which is well 

recognized as an important pathogen in temperate regions, both in terms of animal welfare 

and economic loss. Current control methods rely on the use of anthelmintic drugs; however, 

parasite resistance to these is widespread and increasing, and there are now reports of isolates 

of T. circumcincta which are resistant to several classes of anthelmintic (1). As sheep can 

acquire immunity to T. circumcincta (2–5), vaccination may be an alternative prospect for 

future control (6–9); however, the exact effector mechanisms of immunity remain to be 

elucidated. 

Immunity to T. circumcincta manifests itself in several ways, including worm loss, inhibited 

development of larvae at the early fourth stage (EL4), stunted growth of developing worms 

and reduced fecundity (10,11). Possible roles for both immediate hypersensitivity responses 

and antibodies have been proposed. For example, IgE responses have been correlated with 

reduced faecal egg counts in grazing lambs (12,13), whilst IgA, the main mucosal antibody 

isotype, has been associated with reduced adult worm length and fecundity (10,11,14,15). In 

the experimental infection model employed here, the secondary IgA response observed in the 

gastric lymph of immune animals has been shown to occur rapidly enough to be involved in 

the stunting of developing worms, but too slowly to be responsible for worm loss or 

arrestment at the early L4 stage (11). The cellular immune response has also been 

demonstrated to be an important aspect of acquired immunity through adoptive transfer 

experiments, in which efferent gastric lymphocytes from immune animals responding to a 

challenge infection conferred partial protection to genetically identical naïve sheep (16). 

Experiments looking at the cellular profiles in the abomasal lymph node and abomasal tissue 

have shown changes in the quantity and proportions of both T and B cells at 3 and 5 days 

after infection with T. circumcincta (17), however the kinetics of the various cell types 

involved in the local cellular response has not been investigated to date. 

In the present paper, we further characterize the immune response to a challenge infection 

of Teladorsagia by monitoring the phenotype and kinetics of the cells in the efferent gastric 

lymph of sheep which were immune or susceptible to infection, and by determining whether 

immune sheep reject the challenge infection within 48 h. 
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Materials and Methods 

Sheep 

Three experiments were conducted using a total of 48 yearling sheep aged 10–12 months. All 

had been reared indoors under conditions designed to exclude accidental infection with 

nematode parasites. 

Infective larvae 

Infective L3 were from an anthelmintic susceptible T. circumcincta isolate which had been 

passaged through sheep at Moredun Research Institute for a number of years. Larvae were 

stored for up to 1 month at 4°C prior to administration. All infective larvae used within each 

experiment were derived from the same batch. 

 

Surgical procedures, sample collection and post-mortem procedures 

The common gastric lymph duct, which contains efferent lymph draining all four stomachs, 

was cannulated as detailed elsewhere (18). The sheep were fitted with an indwelling venous 

catheter placed in the jugular vein or the posterior vena cava. Collection, sampling and re-

infusion of lymph, and post-mortem procedures were carried out as previously reported (11). 

 

Worm counting and staging 

Sub-samples (5%) of abomasal washings and mucosal digests were stained by the addition of 

a concentrated iodine solution, washed over a 38 μm sieve and searched under a 

stereomicroscope. The number of male, female and sexually undifferentiated EL4 was 

recorded. 

Statistical methods 

Arithmetic mean with standard errors are shown throughout. Parasite counts and percentage 

EL4 were compared by Student’s t-test. Cell numbers were compared using Student’s t-test, 

and, after log transformation, by repeated measure models (Genstat, VSN International Ltd, 

Hemel Hempstead, UK). P < 0·05 is regarded as the significant level of probability 

throughout. 
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Design of experiments 

Three trials designated Experiments 2, 3 and 4 were conducted (Table 1), so numbered 

because they were part of a larger series of trials sharing the same general design (11). 

All three experiments contained a group of previously infected sheep which had received a 

trickle immunizing infection of 2000 infectiveTeladorsagia larvae three times per week for 

2 months. Experiments 2 and 4 also contained control sheep which did not receive the trickle 

infection. All sheep were challenged with a single dose of 50 000 Teladorsagia larvae 7 days 

after receiving fenbendazole to remove any remnants of the trickle infection from the 

previously infected animals. In experiments 2 and 3 the gastric lymph ducts of 10 sheep in 

each group were cannulated in the interval between anthelmintic treatment and challenge. 

Experiment 2, which contained 30 sheep, has been described in detail before [Experiment 2 

in (11)]. It compared the number and state of development of worms recovered from 

previously infected or control sheep killed 5, 10 or 21 days following challenge (Table 1) in 

relation to their lymph IgA responses. Here, we describe changes in the lymph cell traffic of 

three previously infected and four control sheep from that trial for 10 and 21 days after 

challenge, respectively. Previously infected sheep were killed 10 days after challenge as it is 

known from prior experiments using this model that the major manifestations of immunity to 

the parasite (worm loss and arrested development), as well as the cellular and humoral 

responses occur within 10 days (3,11). 

Experiment 3 consisted of six previously infected sheep killed 10 days after challenge. 

Gastric lymph was successfully obtained from four of these and their cell traffic data was 

pooled with that of the three previously infected sheep in Experiment 2. 

Experiment 4 contained six previously infected and six control sheep. Both groups were 

killed 2 days after challenge to determine whether worm loss had occurred by this time point. 

Lymph was not collected during this experiment. 

Immunofluorescent surface staining of lymphocytes 

Lymph was diluted 1 : 500 in Coulter
®
 Isoton

®
 II Diluent (Beckman Coulter Inc., Fullerton, 

CA, USA) using a Coulter Diluter (Coulter Electronics Ltd, Luton, UK) and total (>3 μm 

diameter) and large (>9 μm diameter) lymphocyte numbers counted using a Z1 

Coulter
®
Particle Counter (Beckman Coulter) Counter. 1 × 10

7
 cells were centrifuged for 

5 min at 1500 rpm, and the pellet washed by resuspending in 5 mL FACS buffer [PBS, 5% 

(v/v) foetal calf serum, 0·02% (w/v) NaN3] and centrifuging again at 1500 rpm for 5 min. 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3024.2009.01119.x/full#t1
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After a further wash in 5 mL FACS buffer the final pellet was resuspended in 1 mL FACS 

buffer. Live/dead discrimination using phase contrast was performed on early efferent lymph 

samples before staining and showed very little cell death, and examination of nigrosin stained 

lymphocytes also revealed negligible cell death. Fifty microlitres washed lymphocytes, at 

1 × 10
7
 cells/mL, were added to round-bottomed 96-well plates (Bibby Sterilin Ltd, Staffs, 

UK) and spun for 1 min at 2000 rpm. The supernatant was discarded, and after vortexing 

briefly to resuspend the pellet 50 μL per well of primary antibody diluted in FACS buffer was 

added. Monoclonal antibodies that recognize border disease virus as isotype controls [clones 

VPM21 (isotype IgG1, 1/500 dilution) and VPM22 isotype IgG2a, 1/500 (19)], ovine CD2 

[clone 36F, isotype IgG2a, 1/1000 (20)], CD4 [clone 17D, IgG1, 1/1000 (21)], CD8 [clone 

7C2, IgG2a, 1/1000 (22)], γδ-T cell receptor [clone 86D, IgG1, 1/1000 (23)], CD25 [clone 

ILA111, IgG2a, 1/2000 (24)], major histocompatibility complex class II [MHC-II; clone 

VPM46, IgG2a, 1/1000 (25)], CD21 [clone CC21, IgG1, 1/10 (26)] and IgA (MCA628; 

Serotec, Oxford, UK, IgG1, 1/1000) were used. Plates were incubated for 20 min at 4°C, 

centrifuged for 1 min at 2000 rpm, the supernatant discarded, then after vortexing briefly 

wells were washed twice with 200 μL FACS buffer. After the second wash, 50 μL goat anti-

mouse Ig phycoerythrin conjugate secondary antibody (Invitrogen Corporation, San Diego, 

CA, USA) diluted 1/400 in FACS buffer were added to each well. Plates were incubated in 

the dark for 15 min at room temperature, then 150 μL FACS buffer was added to each well 

before centrifuging for 1 min at 2000 rpm. Wells were then washed in 200 μL FACS buffer 

then 200 μL PBS before fixing in 1% (w/v) paraformaldehyde in PBS and analysed within 

24 h. 

 

Flow cytometry for visualization of stained cells 

Fluorescent data were acquired on a FACScan flow cytometer equipped with a 488 nm 

argon-ion laser and analysed using CellQuest software (Becton Dickinson, Franklin Lakes, 

NJ, USA). A minimum of 10 000 cells were acquired for each sample. Lymphocytes were 

initially gated according to forward scatter and side scatter to eliminate debris and dead cells, 

then percentage positive for each marker calculated. Large cells were defined by a visually 

determined cut off according to forward scatter. Example FACS plots from one previously 

infected sheep at days 1 and 3 post-challenge are shown in Figure 1. An initial Fsc vs. Ssc 

plot was gated for small lymphocytes, R1; blasting lymphocytes (lymphoblasts), R2; and total 

lymphocytes, R3 (R3 = R1 + R2) (Figure 1a and b). Negative control samples with no 
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primary antibody (Figure 1c and d), and isotype controls (Figure 1e and f) were then plotted 

as Fsc vs. fluorescence, gated with R3. Quadrants were set with the Fsc cut-off for large cells 

as established during initial gating. Cells in the upper quadrants represent those positive for 

the staining antibody, and those in the upper right positive blast cells. The percentage of total 

cells positive for the isotype control antibodies was observed to be below 0·1% for almost all 

samples. Cells stained with anti-CD4, gated with R3, are shown in Figure 1g and h. 

 

Results 

In Experiments 2 and 4 significantly (P < 0·01) fewer worms were recovered from the 

previously infected sheep compared to their respective controls at each time point (Figure 2) 

and the number recovered from the previously infected sheep in Experiment 3 was consistent 

with this data. This indicated that the previously infected sheep rejected the challenge larvae 

within 48 h. 

 

Lymph flow 

Lymph was collected until day 21 from 4 control sheep, and, except for 1 animal which 

stopped flowing on day 7, until day 9 or 10 from 7 previously infected sheep. Data from the 

sheep which stopped flowing at day 7 has been included in the group mean calculations for 

the relevant time points. 

The overall mean lymph flow rate was 14·8 ± 0·8 mL/h. No significant changes with time or 

between groups were observed. 

 

Lymph cell output 

Total cells 

In the control sheep the mean rate of total cell output increased from 1·55 ± 0·31 × 10
8
 cells/h 

on day 0 to 2·63 ± 0·31 × 10
8
 cells/h by day 3, however this was not a significant increase 

(P = 0·08) (Figure 3a). The mean rate of total cell output then remained elevated until day 10, 

thereafter falling to between 1·0 and 1·5 × 10
8
/h, similar to prechallenge values. 

In previously infected sheep mean total cell output was 2·96 ± 0·62 × 10
8
 cells/h on day 3 

compared to 1·86 ± 0·63 × 10
8
 cells/h on day 0, a significant increase (P < 0·05). No 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3024.2009.01119.x/full#f1
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significant difference was found between the groups. Total cell output appeared to decrease 

slightly in both groups towards the end of the experiment. 

 

Percentage blast cells 

Prior to the challenge infection the proportion of lymphoblasts was similar in both groups 

with a mean of about 3% (Figure 3b). After challenge this value increased steadily in both 

groups, increasing to approximately 12% on day 8 in the previously infected, and peaking at 

approximately 14% on day 17 in the controls. No significant differences were observed 

between the groups except on day 1 when the percentage was significantly higher (P < 0·05) 

in the previously infected sheep. 

 

Total lymphoblasts 

In the previously infected sheep the rate of lymphoblast output increased significantly 

(P = 0·05) from 0·95 ± 0·36 × 10
7
 cells/h on day 1 to peak at 2·10 ± 0·46 × 10

7
 cells/h on day 

3, then decreased almost to prechallenge levels by day 8 (Figure 3c). In the control sheep 

lymphoblast output rose more slowly after challenge, from 0·31 ± 0·07 × 10
7
 cells/h on day 1 

to a peak of 2·91 ± 0·47 × 10
7
 cells/h (P = 0·01) on day 10, and then decreased throughout 

the remainder of the experiment (Figure 3c). As the most significant changes occurred within 

the blast cell population, and these are most likely to be the cells responding to the parasite 

infection, the cell-surface marker staining results are focused on lymphoblasts. 

 

Proportion of T and B lymphocytes 

In the previously infected group, the mean proportion of total lymphocytes expressing the cell 

surface markers CD4, CD8, γ/δ T-cell receptor and CD21 at 1 day post-challenge was 50%, 

21%, 10% and 15% respectively, and in the control group was 54%, 17%, 9% and 30% 

(Table 2). Large between animal variation was observed, however the proportions of cell 

types in the efferent lymph did not differ between the two groups. Other than a slight 

decrease in CD4
+
 cells towards the end of the experiment in both groups, no changes over 

time in the proportion of cells expressing these markers was observed. 

 

T cells 

The response of lymphoblasts expressing the pan T-cell marker, CD2, was significantly 

different (P = 0·032) between the two groups (Figure 4a). CD2
+
 blasting cells in the 
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previously infected group rose from 0·43 ± 0·15 × 10
7
 cells/h on day 1 to peak on day 3 at 

1·38 ± 0·33 × 10
7
 cells/h, while in the control group they initially increased more slowly, 

from 0·18 ± 0·03 × 10
7
 cells/h on day 1, peaking on day 10 at 2·36 ± 0·60 × 10

7
 cells/h. In 

each group the peak CD2
+
 lymphoblast output was significantly higher than at 1 day post-

challenge (P < 0·05). 

Similar between group differences were observed for CD4
+
 (P = 0·049, Figure 4b) and 

CD25
+
 (P = 0·017, Figure 4c) lymphoblast outputs which peaked in the previously infected 

group on day 3 at 1·02 ± 0·27, and 0·97 ± 0·24 × 10
7
 cells/h respectively. In contrast, 

CD4
+
 and CD25

+
 lymphoblasts in the control group did not peak until day 10 with outputs of 

1·22 ± 0·17 and 1·77 ± 0·26 × 10
7
 cells/h respectively. In each group of sheep peak outputs 

of both cell types were significantly (P < 0·05) greater than the corresponding day 1 values. 

In addition, the mean peak CD25+ output from the naïve group was significantly higher than 

from previously infected group (P = 0·05). 

The CD8
+
 lymphoblast response was also significantly different between the two groups 

(P = 0·017), with positive blasting cells in the previously infected group again peaking 3 days 

post-challenge at 0·26 ± 0·07 × 10
7
 cells/h (Figure 4d). However, this was not significantly 

different from the day 1 output of 0·18 ± 0·07 × 10
7
 cells/h (P = 0·08), possibly due to wide 

individual variation. In the control group, a trend similar to that seen with CD4
+
 and 

CD25
+
 blasts was observed, with the CD8

+
 lymphoblast output peaking at day 10 at 

0·97 ± 0·39 × 10
7
cells/h. However, statistical analysis again showed this to be not 

significantly more than day 1 levels (P = 0·1), and also not significantly more than the peak 

output of the previously infected group (P = 0·17), possibly due to the high degree of 

individual variation observed and the relatively small group size. 

The pattern of gamma-delta T-cell receptor positive lymphoblast response was significantly 

different between the two groups over the first 8 days of infection (P = 0·001, Figure 4e), 

with increased output in the previously infected group at days 1 and 3 compared to the 

control group. Analysis of the control group over the whole experiment showed that levels of 

γ/δ TCR
+
 blast cells did not change significantly with time. 

 

B cells 

Absolute numbers of blasting cells expressing B-cell markers are shown in Figure 5, with 

lymphoblasts expressing CD21 shown inFigure 5(a). In the previously infected group, 

CD21
+
 blast cell output rose slightly from 0·28 ± 0·14 × 10

7
 cells/h on day 1 to 
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0·49 ± 0·19 × 10
7
 cells/h on day 5, then dropped to 0·18 ± 0·09 × 10

7
 cells/h on day 8, but 

these changes were not significant. In the control group, CD21
+
 blast cell output rose 

significantly (P = 0·01) from 0·13 ± 0·04 × 10
7
 cells/h on day 1 to 1·04 ± 0·17 × 10

7
 cells/h 

on day 10, before decreasing back to prechallenge levels by day 19. 

In the previously infected group, IgA
+
 blast cell output peaked at day 5 at 

0·41 ± 0·14 × 10
7
 cells/h, significantly higher (P = 0·04) than day 1 

(0·09 ± 0·03 × 10
7
 cells/h), then dropped back to 0·12 ± 0·06 × 10

7
 cells/h by day 8 

(Figure 5b). In the control group the IgA
+
 blast cell response appeared to rise slowly over 

time, from 0·08 ± 0·04 × 10
7
 cells/h on day 1 to 0·29 ± 0·07 × 10

7
 cells/h on day 22, the only 

point at which the output was significantly higher than day 1 (P = 0·04). 

Figure 5(c and d) show the kinetics of the IgA
+
 blast cell response in relation to total lymph 

IgA concentrations which have been reported previously (11). In control sheep mean total 

IgA concentrations did not change significantly over the course of the experiment reflecting 

the general lack of an IgA
+
 blast cell response. In contrast a clear anamnestic total IgA 

response was observed in the previously infected sheep, which tracked the secondary 

IgA
+
 blast cell response. 

 

MHC II positive cells 

The response of lymphoblasts expressing MHC II on the cell surface is shown in Figure 5(e). 

Prechallenge this was in the range 0·3–0·6 × 10
7
 cells/h, and was not different between the 

two groups. After challenge MHC 11
+
 lymphoblast output increased in both groups, peaking 

at day 3 in the previously infected sheep at 1·26 ± 0·29 × 10
7
 cells/h, and at day 10 in the 

naïve animals at 2·06 ± 0·43 × 10
7
cells/h before subsiding again. 
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Discussion 

The parasitology data from the three trials described in the present paper confirmed that, with 

this particular infection model, the previously infected sheep rejected most of the challenge 

dose which established in the control animals (11) and showed that this phenomenon had 

occurred within 2 days of infection. Worm loss, through exclusion or expulsion of incoming 

larvae from the gastric pit, is the most important manifestation of immunity to T. 

circumcincta, and prior experiments suggested that it was the result of an active immune 

response rather than a passive state (10). In each group, more worms were recovered at 

10 days post-infection than on day 5, which probably reflects the relative inefficiency of 

recovering worms from the gastric mucosa, as experienced previously (16). 

In this paper, we followed the kinetics of the local cellular response in the efferent gastric 

lymph to infection with T. circumcincta. An increase in total lymphocyte output was 

observed in both groups after infection, corresponding to the ‘recruitment phase’ of the local 

inflammatory response (27). An increase in the percentage of large, blast cells in the gastric 

lymph, that is, cells responding to the parasitic infection, was also observed in both groups, 

however this occurred more rapidly in previously infected than in naïve animals. When this 

data was combined with the total cell output to calculate absolute blast cell traffic, the 

previously infected animals showed a rapid increase in large cell output, which peaked 3 days 

after challenge. A significant increase in blast cell output was also observed in the animals 

undergoing primary infection, however it occurred much more slowly, not peaking until day 

10. This agrees with previous findings where the local cellular response of previously 

infected sheep was observed to peak sooner than that of sheep undergoing a primary infection 

(2,3). 

As expected, the cells in the efferent gastric lymph were almost exclusively lymphocytes; no 

cells positive for monocyte or macrophage specific markers were observed (data not shown). 

The proportion of T and B cells in efferent gastric lymph was comparable to that reported in 

lymph draining other lymph nodes (28,29), including some draining other mucosal surfaces 

(27,28,30,31). A slight drop in the percentage of CD4
+
 cells was observed in both groups 

towards the end of the experiment (data not shown), however other than this the cellular 

response manifested as an increase in total output of cells, and in particular blast cells, rather 

than as a change in the proportion of individual cell types. 

Phenotypic analysis of the cells involved in the immune response, peaking at day 3 in 

previously infected sheep and day 10 in naïve sheep, showed that they were predominantly T 

cells, and within this subset mainly CD4
+
. Depletion experiments have shown CD4

+
 T cells 
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to be essential for immunity of sheep to Haemonchus contortus (32–34), and while similar 

experiments have not, to our knowledge, been carried out with T. circumcincta, our results 

suggest that CD4
+
 cells will also play an important role in immunity to this parasite. 

CD4
+
 cell outputs were greater than CD8

+
 during the blast cell response of the previously 

infected sheep but peak CD8
+
 blast cell output was slightly higher in the primary infection, 

suggesting a predominant role for CD4
+
 cells in the memory response. CD25

+
 lymphoblast 

numbers corresponded to T lymphoblast numbers, which could reflect either T cells 

expressing CD25 (IL-2R) upon activation, or regulatory T cells, however labelling of 

multiple cell surface markers would be required to determine which. 

The B-cell response occurred slightly later than the T-cell response, peaking 5 days after 

challenge in the previously infected animals. The peak IgA
+
 blast cell response almost 

matched the total B-cell blasts in this group, most likely because isotype switching to IgA had 

occurred during the trickle infection period. The same sheep also demonstrated a secondary 

lymph IgA response (11), which tracked these IgA
+
 blast cells approximately 2 days later. By 

8 days post-challenge, IgA
+
 blast cell output had returned to prechallenge levels even 

although the amount of IgA in the lymph remained elevated. Presumably the source of the 

lymph IgA was plasma cells in the mucosa derived to at least some extent from the lymph 

IgA
+
 blast cells which had re-circulated to the gastric mucosa. CD21

+
 blast cells also 

subsided to prechallenge levels by day 8. By analogy with human plasma cells, which rarely 

express CD21 (CR2) (29,35), this change in phenotype was probably due to the loss of CD21 

from terminally differentiated antibody secreting cells although this has not yet been 

confirmed for the sheep. 

In the naïve group, the B-cell blast response was slower, not peaking until day 10, and a 

corresponding peak in IgA
+
 blast cells was not observed, as these animals were undergoing a 

primary immune response. 

In this paper, we have characterized the phenotype and extent of the cell traffic response in 

the gastric lymph of immune or susceptible sheep after infection with T. circumcincta. These 

responses do not seem to have been monitored in this way before in lymph draining a 

mucosal surface. Pernthaner et al. (30) monitored cells in afferent and efferent intestinal 

lymph from sheep infected with T. colubriformisbut did not document any changes other than 

a decrease in the proportion of CD4+ cells from 1 week after infection. Yen et al. (31) 

collected efferent lymph draining the nasopharynx of sheep, and reported an increase in 

lymphocyte proliferation ex vivo following intranasal vaccination, but did not report any 

change in cell traffic. 
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In the present study, a memory response was observed in the immune animals consisting 

initially of blasting CD4
+
 cells, closely followed by IgA

+
 B cells and a corresponding 

increase in parasite specific lymph IgA. However, the worm loss preceded all these 

responses, indicating that none was directly responsible and that the immune effector 

mechanism was probably operating in the abomasal mucosa. The function of the lymph cell 

response may be to disseminate primed or memory cells to other mucosal surfaces including 

the abomasum, a contention supported by earlier adoptive transfer experiments (16), in which 

cells from immune sheep undergoing a response to infection conferred partial immunity to 

genetically identical, naïve sheep. 
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Figures and Tables Legend 

Fig.1 

Example FACS plots from one previously infected sheep. a; c; e and g, 1 day post-challenge. 

b; d; f and h, 3 days post-challenge. a and b, Fsc vs. Ssc, no gate. R1 = small lymphocytes, 

R2 = lymphoblasts, R3 = total lymphocytes (R1 + R2). c and d, Fsc vs. fluorescence, cells 

only (negative control) sample. Gate = R3. e and f, Fsc vs. fluorescence, isotype control 

sample. Gate = R3. g and h, Fsc vs. fluorescence, CD4 stained sample. Gate = R3. 

 

Fig.2 

Worm burdens. Open symbols = controls. Closed symbols = previously infected. Squares = 

experiment 2. Circle = experiment 3. Triangles = experiment 4. 

 

Fig.3 

Cell output. Closed squares = controls. Open triangles = previously infected. (a) Total cell 

output per hour. (b) Percentage lymphoblasts. (c) Total lymphoblast output per hour. 

 

Fig.4 

T-cell lymphoblast output per hour. Squares = controls. Triangles = previously infected. (a) 

CD2
+
. (b) CD4

+
. (c) CD8

+
. (d) CD25

+
. (e) c ⁄ d TCR

+
. 

 

Fig.5 

B-cell lymphoblast output per hour. Squares = controls. Triangles = previously infected. 

Solid lines = cells. Asterisks and broken lines = antibody. (a) CD21
+
. (b) IgA

+
. (c) Control 

IgA
+
 blast cells and total IgA. (d) Previously infected IgA

+
 blast cells and total IgA. (e) MHC 

11
+
. 

 

 

 

 

 

 

 



Tab.1  

Design of experiments. 
a
2000 T. circumcincta L3 three times per week for 8 weeks; 

b
50 000 

T. circumcincta L3. SxD = Suffolk tup, Dorset ewe; LxB = Leicester tup, Scottish Blackface 

ewe. 

Tab.2 

Distribution of lymphocyte subsets at one day postchallenge in the efferent gastric lymph of 

naive and previously infected sheep. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig.1 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 



Fig.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.3 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig.4 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig.5 
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