32,351 research outputs found

    Study of an ACT demonstrator with substantial performance improvements using a redesigned JetStar

    Get PDF
    The feasibility was studied of modifying a JetStar airplane into a demonstrator of benefits to be achieved from incorporating active control concepts in the preliminary design of transport type aircraft. Substantial benefits are shown in terms of fuel economy and community noise by virtue of reduction in induced drag through use of a high aspect ratio wing which is made possible by a gust alleviation system. An intermediate configuration was defined which helps to isolate the benefits produced by active controls technology from those due to other configuration variables

    The conduction pathway of potassium channels is water free under physiological conditions.

    No full text
    Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism

    Magnetooptical sum rules close to the Mott transition

    Full text link
    We derive new sum rules for the real and imaginary parts of the frequency-dependent Hall constant and Hall conductivity. As an example, we discuss their relevance to the doped Mott insulator that we describe within the dynamical mean-field theory of strongly correlated electron systems.Comment: 4 pages, 4 ps figures; accepted for publication in PR

    Via Hexagons to Squares in Ferrofluids: Experiments on Hysteretic Surface Transformations under Variation of the Normal Magnetic Field

    Full text link
    We report on different surface patterns on magnetic liquids following the Rosensweig instability. We compare the bifurcation from the flat surface to a hexagonal array of spikes with the transition to squares at higher fields. From a radioscopic mapping of the surface topography we extract amplitudes and wavelengths. For the hexagon--square transition, which is complex because of coexisting domains, we tailor a set of order parameters like peak--to--peak distance, circularity, angular correlation function and pattern specific amplitudes from Fourier space. These measures enable us to quantify the smooth hysteretic transition. Voronoi diagrams indicate a pinning of the domains. Thus the smoothness of the transition is roughness on a small scale.Comment: 17 pages, 14 figure

    B-Meson Distribution Amplitudes of Geometric Twist vs. Dynamical Twist

    Full text link
    Two- and three-particle distribution amplitudes of heavy pseudoscalar mesons of well-defined geometric twist are introduced. They are obtained from appropriately parametrized vacuum-to-meson matrix elements by applying those twist projectors which determine the enclosed light-cone operators of definite geometric twist and, in addition, observing the heavy quark constraint. Comparing these distribution amplitudes with the conventional ones of dynamical twist we derive relations between them, partially being of Wandzura-Wilczek type; also sum rules of Burkhardt-Cottingham type are derived.The derivation is performed for the (double) Mellin moments and then re-summed to the non-local distribution amplitudes. Furthermore, a parametrization of vacuum-to-meson matrix elements for non-local operators off the light-cone in terms of distribution amplitudes accompanying independent kinematical structures is derived.Comment: 18 pages, Latex 2e, no figure

    Observation of interspecies Feshbach resonances in an ultracold Rb-Cs mixture

    Full text link
    We report on the observation of interspecies Feshbach resonances in an ultracold, optically trapped mixture of Rb and Cs atoms. In a magnetic field range up to 300 G we find 23 interspecies Feshbach resonances in the lowest spin channel and 2 resonances in a higher channel of the mixture. The extraordinarily rich Feshbach spectrum suggests the importance of different partial waves in both the open and closed channels of the scattering problem along with higher-order coupling mechanisms. Our results provide, on one hand, fundamental experimental input to characterize the Rb-Cs scattering properties and, on the other hand, identify possible starting points for the association of ultracold heteronuclear RbCs molecules.Comment: 7 pages, 3 figures, 1 tabl

    Composite infrared bolometers with Si_3N_4 micromesh absorbers

    Get PDF
    We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20× reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 × 10^(−11) W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the Sunyaev–Zel’dovich Infrared Experiment is ±7% in R (T), ±5% in optical efficiency, and ±4% in G

    Lifetime Measurement of the 6s Level of Rubidium

    Full text link
    We present a lifetime measurements of the 6s level of rubidium. We use a time-correlated single-photon counting technique on two different samples of rubidium atoms. A vapor cell with variable rubidium density and a sample of atoms confined and cooled in a magneto-optical trap. The 5P_{1/2} level serves as the resonant intermediate step for the two step excitation to the 6s level. We detect the decay of the 6s level through the cascade fluorescence of the 5P_{3/2} level at 780 nm. The two samples have different systematic effects, but we obtain consistent results that averaged give a lifetime of 45.57 +- 0.17 ns.Comment: 10 pages, 9 figure
    • 

    corecore