56 research outputs found

    Pointlike constituent quarks and scattering equivalences

    Full text link
    In this paper scattering equivalences are used to simplify current operators in constituent quark models. The simplicity of the method is illustrated by applying it to a relativistic constituent quark model that fits the meson mass spectrum. This model requires a non-trivial constituent quark current operator to fit the pion form factor data. A model with a different confining interaction, that has the identical spectrum and can reproduce the measured pion form factor using only point-like constituent quark impulse currents is constructed. Both the original and transformed models are relativistic direct-interaction models with a light-front kinematic subgroup.Comment: 12 pages, 6 figures, corrected caption on fig

    Finite size and intrinsic field effect on the polar-active properties of the ferroelectric-semiconductor heterostructures

    Full text link
    Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium distributions of electric field, polarization and space charge in the ferroelectric-semiconductor heterostructures containing proper or incipient ferroelectric thin films. The role of the polarization gradient and intrinsic surface energy, interface dipoles and free charges on polarization dynamics are specifically explored. The intrinsic field effects, which originated at the ferroelectric-semiconductor interface, lead to the surface band bending and result into the formation of depletion space-charge layer near the semiconductor surface. During the local polarization reversal (caused by the inhomogeneous electric field induced by the nanosized tip of the Scanning Probe Microscope (SPM) probe) the thickness and charge of the interface layer drastically changes, it particular the sign of the screening carriers is determined by the polarization direction. Obtained analytical solutions could be extended to analyze polarization-mediated electronic transport.Comment: 35 pages, 12 figures, 1 table, 2 appendices, to be submitted to Phys. Rev.

    Elastic Charge Form Factors of π\pi and K Mesons

    Full text link
    The elastic charge form factors of the charged π\pi and KK mesons are calculated in modified impulse approximation using instant form of relativistic Hamiltonian dynamics. Our approach gives pion and kaon electromagnetic form factors in the large range of momentum transfer. The results are in good agreement with the available data. Relativistic effects are large at all values of momentum transfers. The pion and kaon form factors at large Q2Q^2 depend strongly on the choice of model. The experiments on pion form factor at large momentum transfer planned at CEBAF will choose between such models. In the case of kaon such a choosing may be performed only if supplemented by accurate measurements of kaon MSR.Comment: 9 pages, LaTeX, 2 uuencoded PostScript figure

    Form factors in RQM approaches: constraints from space-time translations

    Full text link
    Different relativistic quantum mechanics approaches have recently been used to calculate properties of various systems, form factors in particular. It is known that predictions, which most often rely on a single-particle current approximation, can lead to predictions with a very large range. It was shown that accounting for constraints related to space-time translations could considerably reduce this range. It is shown here that predictions can be made identical for a large range of cases. These ones include the following approaches: instant form, front form, and "point-form" in arbitrary momentum configurations and a dispersion-relation approach which can be considered as the approach which the other ones should converge to. This important result supposes both an implementation of the above constraints and an appropriate single-particle-like current. The change of variables that allows one to establish the equivalence of the approaches is given. Some points are illustrated with numerical results for the ground state of a system consisting of scalar particles.Comment: 37 pages, 7 figures; further comments in ps 16 and 19; further references; modified presentation of some formulas; corrected misprint

    Finite Size and Intrinsic Field Effect on the Polar-Active Properties of Ferroelectric-Semiconductor Heterostructures

    Full text link
    Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium distributions of electric field, polarization, and space charge in the ferroelectric-semiconductor heterostructures containing proper or incipient ferroelectric thin films. The role of the polarization gradient and intrinsic surface energy, interface dipoles, and free charges on polarization dynamics are specifically explored. The intrinsic field effects, which originated at the ferroelectric-semiconductor interface, lead to the surface band bending and result into the formation of depletion space-charge layer near the semiconductor surface. During the local polarization reversal (caused by the electric field of the nanosized tip of the scanning probe microscope) the thickness and charge of the interface layer drastically changes, in particular, the sign of the screening carriers is determined by the polarization direction. Obtained analytical solutions could be extended to analyze polarization-mediated electronic transport. © 2010 The American Physical Society.Authors are grateful to E. Tsymbal and E. Tsymbal for valuable critical remarks. Research is sponsored by Ministry of Science and Education of Ukraine and National Science Foundation(Materials World Network, Grant No. DMR-0908718). S.V.K. and A.B. acknowledge the DOE SISGR program. P.M. is supported by the Division of Scientific User Facilities, US DOE
    corecore