1,545 research outputs found

    Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition

    Get PDF
    Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable

    Co-occurrence of the Cyanotoxins BMAA, DABA and Anatoxin-a in Nebraska Reservoirs, Fish, and Aquatic Plants

    Get PDF
    Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins ÎČ-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 ÎŒg/L and LC/MS/MS detection limits were \u3c0.5 ÎŒg/L, while detection limits for biological samples were in the range of 0.8–3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%

    Population of bound excited states in intermediate-energy fragmentation reactions

    Get PDF
    Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a wide range of reaction mechanisms, ranging from direct reactions to statistical processes. We examine this transition by measuring the relative population of excited states in several sd-shell nuclei produced by fragmentation with the number of removed nucleons ranging from two to sixteen. The two-nucleon removal is consistent with a non-dissipative process whereas the removal of more than five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure

    Characterization of Microbial Populations in Landfill Leachate

    Get PDF
    In the United States, municipal solid waste (MSW) landfills remain a potential mining source of recoverable materials, including but not limited to critical, precious, and rare earth metals found in electronic waste. This is possible due to collectible leachate that filters through MSW landfills, carrying metals, nutrients of value, and microbes—some of which may hold key metal bioleaching properties—within. The purpose of this study is to begin analyzing leachate from MSW landfills in the American Midwest to understand the composition of microbial communities within these landfills. Landfill leachate samples sourced in northern Indiana, representing the landfill process during unique times of operation, were used in this study. Culture-independent studies, utilizing both DNA extraction and PCR for communities of archaea, bacteria, and fungi, were performed on leachate samples. Current results indicate that in 6 of 11 samples, both bacterial and archaeal DNA were likely present, while 1 additional sample yielded only amplified archaeal DNA, and 1 more yielded only amplified bacterial DNA. This implies the presence of both archaea and bacteria which may hold metal bioleaching capabilities. Follow-up research will involve analyzing other Midwestern leachate samples, identifying landfill microbes with metal bioleaching properties, and developing a way to integrate these microbes with membrane filtration and other physico-chemical processes to improve recovery of important metals from leachate

    Two-neutron knockout from neutron-deficient 34^{34}Ar, 30^{30}S, and 26^{26}Si

    Get PDF
    Two-neutron knockout reactions from nuclei in the proximity of the proton dripline have been studied using intermediate-energy beams of neutron-deficient 34^{34}Ar, 30^{30}S, and 26^{26}Si. The inclusive cross sections, and also the partial cross sections for the population of individual bound final states of the 32^{32}Ar, 28^{28}S and 24^{24}Si knockout residues, have been determined using the combination of particle and Îł\gamma-ray spectroscopy. Similar to the two-proton knockout mechanism on the neutron-rich side of the nuclear chart, these two-neutron removal reactions from already neutron-deficient nuclei are also shown to be consistent with a direct reaction mechanism.Comment: Phys. Rev. C, rapid communication, in pres

    Uncoupling growth from phosphorus uptake in Lemna: Implications for use of duckweed in wastewater remediation and P recovery in temperate climates

    Get PDF
    Phosphorus (P) is an essential nutrient for crop growth and the second most limiting after N. Current supplies rely on P‐rich rocks that are unevenly distributed globally and exploited unsustainably, leading to concerns about future availability and therefore food security. Duckweeds (Lemnaceae) are aquatic macrophytes used in wastewater remediation with the potential for nutrient recycling as feed or fertilizer. The use of duckweeds in this way is confined to tropical regions as it has previously been assumed that growth in the colder seasons of the temperate regions would be insufficient. In this study, the combined effects of cool temperatures and short photoperiods on growth and P uptake and accumulation in Lemna were investigated under controlled laboratory conditions. Growth and P accumulation in Lemna can be uncoupled, with significant P removal from the medium and accumulation within the plants occurring even at 8°C and 6‐hr photoperiods. Direct measurement of radiolabeled phosphate uptake confirmed that while transport is strongly temperature dependent, uptake can still be measured at 5°C. Prior phosphate starvation of the duckweed and use of nitrate as the nitrogen (N) source also greatly increased the rate of P removal and in‐cell accumulation. These results form the basis for further examination of the feasibility of duckweed‐based systems for wastewater treatment and P recapture in temperate climates, particularly in small, rural treatment works

    Anomalous Dynamics of Translocation

    Full text link
    We study the dynamics of the passage of a polymer through a membrane pore (translocation), focusing on the scaling properties with the number of monomers NN. The natural coordinate for translocation is the number of monomers on one side of the hole at a given time. Commonly used models which assume Brownian dynamics for this variable predict a mean (unforced) passage time τ\tau that scales as N2N^2, even in the presence of an entropic barrier. However, the time it takes for a free polymer to diffuse a distance of the order of its radius by Rouse dynamics scales with an exponent larger than 2, and this should provide a lower bound to the translocation time. To resolve this discrepancy, we perform numerical simulations with Rouse dynamics for both phantom (in space dimensions d=1d=1 and 2), and self-avoiding (in d=2d=2) chains. The results indicate that for large NN, translocation times scale in the same manner as diffusion times, but with a larger prefactor that depends on the size of the hole. Such scaling implies anomalous dynamics for the translocation process. In particular, the fluctuations in the monomer number at the hole are predicted to be non-diffusive at short times, while the average pulling velocity of the polymer in the presence of a chemical potential difference is predicted to depend on NN.Comment: 9 pages, 9 figures. Submitted to Physical Review
    • 

    corecore