67 research outputs found

    Integrated planning framework for successful river restoration projects: upscaling lessons learnt from European case studies

    Get PDF
    Despite considerable investment in river restoration projects, there is still limited information on the efficacy and success of river restoration activities. One of the main reasons is poor or improper project design, resulting in common problems such as: not addressing the root cause of habitat degradation; not establishing reference conditions, benchmarks and not defining endpoints against which to measure success; inappropriate uses of common restoration techniques because of lack of pre-planning; and inadequate monitoring or appraisal of restoration projects. In this paper peer-reviewed and grey literature and a large database of existing case studies were reviewed to identify the prevailing challenges river managers face when planning and developing river restoration projects. To overcome these current challe nges an integrated project planning framework has been developed that incorporates adaptive management and project management techniques. It encapsulates key concepts and decision support tools to advance the existing sequence of project identification, project formulation, project implementation and post-project monitoring to incorporate multidisciplinary decision making to meet specific environmental and socio-economic objectives. The proposed river restoration project planning framework is adaptable and can therefore be applied to any project development scenario locally, regionally or internationally

    The scaling properties of exchange and correlation holes of the valence shell of second row atoms

    Full text link
    We study the exchange and correlation hole of the valence shell of second row atoms using variational Monte Carlo techniques, especially correlated estimates, and norm-conserving pseudopotentials. The well-known scaling of the valence shell provides a tool to probe the behavior of exchange and correlation as a functional of the density and thus test models of density functional theory. The exchange hole shows an interesting competition between two scaling forms -- one caused by self-interaction and another that is approximately invariant under particle number, related to the known invariance of exchange under uniform scaling to high density and constant particle number. The correlation hole shows a scaling trend that is marked by the finite size of the atom relative to the radius of the hole. Both trends are well captured in the main by the Perdew-Burke-Ernzerhof generalized-gradient approximation model for the exchange-correlation hole and energy.Comment: 18 pages, 8 figure

    Separation of the Exchange-Correlation Potential into Exchange plus Correlation: an Optimized Effective Potential Approach

    Full text link
    Most approximate exchange-correlation functionals used within density functional theory are constructed as the sum of two distinct contributions for exchange and correlation. Separating the exchange component from the entire functional is useful since, for exchange, exact relations exist under uniform density scaling and spin scaling. In the past, accurate exchange-correlation potentials have been generated from essentially exact densities constructed using information from either quantum chemistry or quantum Monte Carlo calculations but they have not been correctly decomposed into their separate exchange and correlation components, except for two-electron systems. exchange and correlation components (except for two-electron systems). Using a recently proposed method, equivalent to the solution of an optimized effective potential problem with the corresponding orbitals replaced by the exact Kohn-Sham orbitals, we obtain the separation according to the density functional theory definition. We compare the results for the Ne and Be atoms with those obtained by the previously used approximate separation scheme

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface

    A multi-scale hierarchical framework for developing understanding of river behaviour to support river management

    Get PDF
    The work leading to this paper was funded through the European Union’s FP7 programme under Grant Agreement No. 282656 (REFORM). The framework methodology was developed within the context of Deliverable D2.1 of the REFORM programme, and all partners who contributed to the development of the four parts of this deliverable are included in the author list of this paper. More details on the REFORM framework can be obtained from part 1 of Deliverable D2.1 (Gurnell et al. 2014), which is downloadable from http://​www.​reformrivers.​eu/​results/​deliverables

    Energy densities in the strong-interaction limit of density functional theory

    Get PDF
    We discuss energy densities in the strong-interaction limit of density functional theory, deriving an exact expression within the definition (gauge) of the electrostatic potential of the exchange-correlation hole. Exact results for small atoms and small model quantum dots are compared with available approximations defined in the same gauge. The idea of a local interpolation along the adiabatic connection is discussed, comparing the energy densities of the Kohn-Sham, the physical, and the strong-interacting systems. We also use our results to analyze the local version of the Lieb-Oxford bound, widely used in the construction of approximate exchange-correlation functionals.Comment: 12 page
    • …
    corecore