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ABSTRACT: We discuss energy densities in the strong-interaction limit of density functional theory, deriving an exact
expression within the definition (gauge) of the electrostatic potential of the exchange-correlation hole. Exact results for small
atoms and small model quantum dots (Hooke’s atoms) are compared with available approximations defined in the same gauge.
The idea of a local interpolation along the adiabatic connection is discussed, comparing the energy densities of the Kohn−Sham,
the physical, and the strong-interacting systems. We also use our results to analyze the local version of the Lieb−Oxford bound,
widely used in the construction of approximate exchange-correlation functionals.

1. INTRODUCTION
Increasing the accuracy of the approximations to the exchange-
correlation energy functional Exc[ρ] of Kohn−Sham (KS)
density functional theory (DFT) is of crucial importance for
research areas ranging from theoretical chemistry and
biochemistry to solid-state and surface physics (for a recent
review, see, e.g., ref 1).
A piece of exact information on Exc[ρ] is provided by the

strong-interaction limit of DFT, in which the coupling constant
of the electron−electron interaction becomes infinitely large
while the one-electron density ρ(r) does not change.2−5 This
defines a fictitious system with the same density as the physical
one and maximum possible correlation between the relative
electronic positions, useful to describe situations in which
restricted Kohn−Sham DFT encounters problems, such as low-
density many-particle scenarios and the breaking of the
chemical bond.6,7 The exact mathematical structure of this
limit has been uncovered only recently,8−10 and exact
calculations (at least for simple systems) have started to
become available.6,7,11

The aim of this paper is to make a step forward in the
inclusion of this new piece of exact information into
approximations to the exchange-correlation energy functional
Exc[ρ]. Previous attempts in this direction3−5 focused on global
(i.e., integrated over all space) quantities, introducing size-
consistency errors. The exact solution of the strong-interaction
limit, now available, makes accessible not only global but also
local quantities, from which it is easier to construct size-
consistent approximations12−14 (for a critical review on size
consistency of approximate energy density functionals, see, e.g.,
ref 15 and, especially, ref 16).
Local quantities are in general not uniquely defined (see, e.g.,

ref 17 for further discussion on the exchange-correlation energy
density and refs 18−21 for the kinetic energy density), and we
have to be specific on their definition (also called gauge). Here,
we focus on the conventional, physically transparent, definition
in terms of the electrostatic energy of the exchange-correlation
hole. We derive the exact expression within this definition in

the strong-interaction limit, and we evaluate it for small atoms
and small model quantum dots, making comparisons with
available approximations within the same gauge. We then
discuss the idea of a local interpolation along the adiabatic
connection by comparing energy densities in the physical case,
the weak- and the strong-interaction limit.
As a byproduct, our results allow us to analyze the local

version of the Lieb−Oxford bound, a condition widely used to
construct approximate exchange-correlation functionals. It is
well-known that the Lieb−Oxford bound is an exact
condition22−24 on the global Exc[ρ]. Many nonempirical
approximate functionals, however, use its local version, which
is a sufficient but not necessary condition to ensure the global
bound (see, e.g., refs 25, 26, and 27). Our analysis strongly
suggests that the local version of the Lieb−Oxford bound is
formulated in the gauge of the electrostatic potential of the
exchange-correlation hole. This, in turn, implies that the local
bound is certainly violated at least in the tail region of a
molecular or atomic density, and in the bond region of a
stretched molecule.
The paper is organized as follows. In section 2, we review the

DFT adiabatic connection as a tool to build approximate
Exc[ρ], highlighting the role of the strong-interaction limit and
discussing the size-consistency problem of interpolations based
on global quantities. In section 3, we discuss energy densities in
general, and we introduce the gauge of the electrostatic energy
associated with the exchange-correlation hole. The exact
expression for this quantity in the strong-interaction limit is
derived in section 4, where approximations are also discussed.
In particular, we analyze the “point-charge plus continuum”
(PC) model functional,4 showing that it is an approximation to
the energy density within the same conventional definition
considered here. Energy densities along the adiabatic
connection are discussed and analyzed in section 5. We then
use our results to discuss the local version of the Lieb−Oxford
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bound in section 6. The last section, section 7, is devoted to
conclusions and perspectives. Finally, a simple illustration for
the case of the uniform electron gas is reported in the
Appendix.

2. INTERPOLATION ALONG THE ADIABATIC
CONNECTION

Within the framework of the adiabatic connection,28−30 the
exchange-correlation energy can be expressed by the coupling
constant integration

∫
∫

ρ λ ρ ρ ρ

λ ρ

= ⟨Ψ | ̂ |Ψ ⟩ −
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with Ψλ[ρ] being the ground state wave function of a fictitious
system with scaled electron−electron interaction

λ̂ = ̂ + ̂ + ̂ λH T V Vee ext (2)

The external potential V̂ext
λ is adjusted to keep the density ρλ(r)

associated with Ψλ[ρ] in agreement with the physical density,
ρλ(r) = ρ1(r)  ρ(r). For the weak interaction limit (λ = 0,)
we encounter the Kohn−Sham31 reference system, and the
integrand W0[ρ] becomes the exact exchange energy Ex[ρ]. For
the strong-interaction limit (λ → ∞), a reference system within
the strictly correlated electrons concept (SCE)2,3,8,9 can be
defined. The asymptotic expansions of Wλ[ρ] are
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where Ec
GL2[ρ] is the correlation energy given by second order

Görling−Levy perturbation theory (GL2)32 and p ≥ 5/4.9

Exact expressions for the functionals W∞[ρ] and W′∞[ρ] are
given, respectively, in refs 8 and 9.
Expression 1 for the exchange-correlation energy is exact as

long as the exact dependence of the integrand on λ is
known.33,34 As this is obviously not the case, eq 1 still enables
approximate exchange-correlation energies by modeling Wλ[ρ]
along the adiabatic connection.
Attempts toward approximate Wλ[ρ] were initiated by

Becke,35 introducing the half and half functional, in which a
model is defined assuming a linear dependence of Wλ[ρ] on λ
and setting W0[ρ] equal to exact exchange and W1[ρ] to LSDA
exchange-correlation. This results in a functional with 50%
exact exchange and 50% LSDA exchange-correlation. Further
adjustment of the portion of exact exchange by semiempirical
arguments gives rise to hybrid functionals like B3LYP.36−39 The
adiabatic connection may also be used for the construction of
nonempirical hybrids as in ref 40, where a model for Wλ[ρ]
consisting of two intersected straight lines fixed by exact
exchange, GGA exchange, and GGA exchange-correlation is
defined. Ernzerhof41 introduced a curved model by proposing a
Pade ́ interpolation for the integrand using as input exact
exchange and Ec

GL2[ρ] in the weak interaction limit and GGA
exchange-correlation for λ = 1.
The models we have mentioned so far for the integrand

(except for B3LYP) share in common that for the weak
interaction limit, exact exchange is employed, and for the
physical situation with λ = 1, information from approximate

DFT (DFA) is used. The argument for the recourse to exact
exchange is that DFA exchange works well only if combined
with DFA correlation. This is due to error cancellation.
Consequently, DFA exchange-correlation can be used for the
physical case where exchange and correlation are employed
together. As error cancellation in DFA exchange-correlation
might not be satisfactory, a continuation of the ansatz of
Ernzerhof41 is possible by taking DFA exchange-correlation at
some intermediate λ instead of λ = 1. This would allow one to
balance the exchange error with the correlation error. Along
this line, Mori-Sańchez et al.42 constructed their MCY1
functional: a Pade ́ interpolation is undertaken with exact
exchange and meta-GGA exchange input in the weak
interaction limit and meta-GGA exchange-correlation for an
intermediate λ (chosen semiempirically).
The discussed models clearly outperform the stand alone

DFAs upon which they are based.35,40−42 Nonetheless,
employment of DFA quantities in their construction can lead
to serious misbehavior in the curvature of the integrand as
demonstrated by Peach et al.43 by comparison of the MCY1
approximation with accurate quantities along the adiabatic
connection (see, e.g., Figure 3 in ref 43). In the same paper, the
authors show that accurate exchange-correlation energy can be
recovered via an interpolation with accurate full-CI ingredients.
A model that could avoid unfavorable DFA bias is the

interaction strength interpolation (ISI).2−4,9 Here, exact
information from the weak interaction limit is employed,
namely exact exchange and GL2, together with information
from the strong interaction limit. The λ dependence ofWλ[ρ] is
then modeled by an interpolation between the two limits. As at
the time of emergence of the ISI exact quantities for the strong
interaction limit were not available, the point-charge plus
continuum (PC) model was introduced.2−4 The PC model
provides approximate expressions for W∞[ρ] and W′∞[ρ] in a
DFA spirit and, consequently, can lead to erroneous behavior of
Wλ[ρ] (see below for more discussion). A full avoidance of
DFA bias is possible within the SCE many-electron formalism,
within which the functionals W∞[ρ] and W′∞[ρ] can be
accurately computed.8,9 Refs 8 and 9 compare the PC solutions
with the exact SCE values for small atoms: while W∞

PC[ρ] is a
very reasonable approximation to its exact counterpart,8 the
original W′∞PC[ρ] turned out to be much less accurate.9 The
exact results could be used to propose a revised PC
approximation W′∞revPC[ρ] having accuracy similar to that of
W∞

PC[ρ]. Further comparison is undertaken in section 4.2 of this
paper for a more subtle quantity, the local energy density that
will be defined in the next sections.
Although free of any DFA bias (if we use exact input

quantities), an unpleasant feature of the ISI is the violation of
size consistency. This is due to the nonlinear way the (size-
consistent) ingredients W0[ρ], W′0[ρ], W∞[ρ], and W′∞[ρ]
enter the interpolation. For example, the revised ISI (which
behaves better in the λ → ∞ limit than the original ISI) reads9

ρ λ ρ λ ρ λ
ρ λ ρ

= ∂
∂ +

+ +λ
⎛
⎝
⎜⎜

⎞
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c d
[ ] [ ] [ ]

1 [ ] [ ]
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(5)

where a, b, c, and d are nonlinear functions of W0[ρ], W′0[ρ],
W∞[ρ], and W′∞[ρ], determined by imposing the asymptotic
expansions of eqs 3 and 4:

ρ ρ= ∞a W[ ] [ ] (6)
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Notice that the lack of size consistency is shared by all
functionals in which the exact exchange energy (or any global
energy) enters in a nonlinear way, thus, also, for example,
MCY1.
As a final remark on the revISI functional, we can add that if

one makes the approximation Ec
GL2 ≈ Ec

MP2, it can be viewed as
a double hybrid functional (see, e.g., refs 44−47). With respect
to available double hybrids, the revISI lacks size consistency,
but it has the advantage of being able to deal with the small-gap
systems problematic for perturbation theory. The practical
impact of the lack of size consistency of the revISI functional in
this context still needs to be tested, but from theoretical
grounds it can be expected that difficulties in dissociating
chemical bonds might arise (for further discussion in the
context of fractional electron numbers, see, e.g., refs 48−51).

3. ENERGY DENSITIES: DEFINITIONS
A possible way to recover size consistency in the ISI framework
is to use a local integrand in eq 1:

∫ ∫ρ λ ρ ρ= λE wr r r[ ] d d ( ) [ ]( )xc
0

1

(10)

The idea is then to build a local model, wλ
ISI[ρ](r), by

interpolating between the λ → 0 and the λ → ∞ limits. As
anticipated in section 1, the energy density wλ[ρ](r) is not
uniquely defined, and an important requirement to construct an
interpolation is that the input local quantities in the weak- and
in the strong-interaction limits are defined in a consistent
manner (same gauge).
One of the most widely used definitions of the energy

density in DFT is in terms of the exchange-correlation hole
(see, e.g., refs 12, 13, and 14) hxc

λ (r, r′):
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and the pair-density P2
λ(r, r′) is obtained from the wave

function Ψλ[ρ] of eqs 1 and 2:
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In the definition of eq 11, wλ[ρ](r) is the electrostatic potential
of the exchange-correlation hole (a negative charge distribution
normalized to −1), around a reference electron in r. This
quantity at the physical coupling strength λ = 1 (plus the
Hartree potential) has also been called vcond(r) in the literature
(see, e.g., ref 52).

The energy density wλ[ρ](r) in the λ → ∞ limit in the gauge
of eq 11 is the central quantity of this paper: in the next section,
we will derive an exact expression using the strictly correlated
electron concept, and we will evaluate it for small atoms and
quantum dots (Hooke’s atoms). Notice that the relevance of
w∞[ρ](r) for the construction of a new generation of
approximate Exc[ρ] has also been pointed out very recently
by Becke.53

4. ENERGY DENSITIES IN THE STRONG INTERACTION
LIMIT
4.1. Exact. When λ → ∞, the wave function Ψλ[ρ] tends to

the strictly correlated electron state, Ψλ→∞[ρ] → ΨSCE[ρ],
with8,9

∫∑ ρ δ

δ δ
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N N
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( , ..., ) 1 d ( ) ( ( ))
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2

1 (1)

2 (2) ( )
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where f1, ..., fN are “co-motion functions”, with f1(r) r, and
denotes a permutation of {1, ..., N}. This means that the N
points r1, ..., rN in 3D space found upon simultaneous
measurement of the N electronic positions in the SCE state
always obey the N − 1 relations

= =i Nr f r( ) ( 2, ..., )i i 1 (15)

In other words, the position of one electron determines all the
relative N − 1 electronic positions (the limit of strict
correlation). All the N − 1 co-motion functions fi(s) satisfy
the differential equation

ρ ρ=d df r f r r r( ( )) ( ) ( )i i (16)

which, together with the group properties8,10 of fi(r), ensure
that the SCE wave function of eq 14 yields the given density
ρ(r). Equation 16 has a simple physical interpretation: since the
position of one electron determines the position of all the
others, the probability of finding one electron in the volume
element dr about r must be the same of finding the ith electron
in the volume element dfi(r) about fi(r).
Inserting eq 14 into eq 13, we obtain for the pair density

P2
λ→∞(r1, r2) = P2

SCE(r1, r2) in the strong-interaction limit
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1 2
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which also has a transparent physical meaning: two electrons
can only be found at strictly correlated relative positions.
We first compute

∫ ∫∑ ρ δ′
| − ′| ′ = −

| − |=
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where, on the right-hand side, we have already integrated over
the variable r′. From the properties of the Dirac δ distribution
and of the co-motion functions, eq 18 becomes
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where |det ∂α f i,β−1(r)| (with α, β = x, y, z) is the determinant of
the Jacobian of the transformation r → fi

−1(r), and we have
used the fact that all of the fi(r) (and their inverses, which, by
virtue of the group properties of the co-motion functions are
also co-motion functions for the same configuration8,9) satisfy
eq 16. Now, we can use once more the group properties of the
co-motion functions to recognize that for all i ≠ j the function
fj(fi

−1(r)) must be another co-motion function with the
exclusion of f1(r) = r (the identity can arise only if i = j).
The double sum in the last term of eq 19 is then exactly equal
to N times a single sum over all of the co-motion functions
fk(r) with k ≥ 2, so that
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Inserting eq 20 into eqs 11 and 12, we finally obtain
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where vH(r) is the Hartree potential. Notice that in previous
work the exact W∞[ρ] was given as7−9
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suggesting a corresponding energy density
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Equations 23 and 21 yield the same W∞[ρ] when integrated
with the density ρ(r) but are locally different. They show a
general feature of the co-motion functions: any given energy
density w∞

a (r) can always be transformed into a different energy
density w∞

b (r) defined as

∑≡∞
=

∞w
N

wr f r( ) 1 ( ( ))b

i

N
a

i
1 (24)

When multiplied by the density ρ(r), w∞
a (r) and w∞

b (r)
integrate to the same quantity, because all of the co-motion
functions (and their inverses, which are also co-motion
functions) satisfy eq 16. Only eq 21 corresponds to the
gauge of the exchange-correlation hole defined by eqs 11−13.
4.2. Approximations: The PC Model. The point-charge-

plus-continuum (PC) model4,54 is a physically sound
approximation to the λ → ∞ indirect electron−electron
repulsion energy W∞[ρ]. The idea is to rewrite the indirect
Coulomb interaction energy Wλ[ρ] as the electrostatic energy
Ees[Ψλ, ρ] of a system of N electrons in the state Ψλ[ρ]

embedded in a smeared background of positive charge ρ+(r) =
ρ(r).4 In fact, this total electrostatic energy Ees[Ψλ, ρ] is just the
sum of the electron−electron repulsion energy, Eee =
⟨Ψλ|V̂ee|Ψλ⟩, the electron−background attraction energy, Eeb =
−2U[ρ], and the background−background repulsion energy
Ebb=U[ρ], thus yielding exactly Ees[Ψλ, ρ] = Eee + Eeb + Ebb =
Wλ[ρ].
This relation is valid for every λ, but in the λ → ∞ limit,

when Ψλ → ΨSCE, we expect that the electrons minimize
Ees[Ψλ,ρ] by occupying relative positions that divide the space
into neutral cells with possibly zero (or weak) lowest-order
electrostatic multipole moments.4 The idea is then that for one
of the SCE configurations {r,f2(r), ..., fN(r)} we may
approximate the indirect electron−electron repulsion by the
sum of the electrostatic energies of all of the cells (i.e., we
neglect the cell−cell interaction in view of their neutrality and
low multipole moments):

∑ε ρ≈
=

Er f r f r f r( , ( ), ..., ( )) ([ ]; ( ))N
i

N

ies 2
1

cell
(25)

where Ecell([ρ];ri) is the electrostatic energy of the cell around
an electron at position ri, equal to the sum of the attraction
between the electron and the background contained in the cell
and the background−background repulsion inside the cell.4

Notice that, for a given SCE configuration, the electrostatic
energy εes(r,f2(r), ..., fN(r)) of eq 25 is equal to Nw̃∞(r), where
w̃∞(r) is given in eq 23. The PC model is then trying to
approximate Nw̃∞(r) by constructing the electrostatic energy
Ecell([ρ];ri) of a cell around the electron at position ri. However,
and this is a crucial step to understand the gauge of the PC
model, once an approximation for Ecell([ρ];ri) has been built,
the sum over the N electrons on the right-hand side of eq 25 is
replaced by NEcell([ρ];r).

4 In the original derivation of the PC
model,4 this step was seen as a further approximation. From the
derivation of eqs 17−21, we see that this is not an
approximation but an exact feature of the λ → ∞ limit,
summarized in eq 24. Because of this transformation, the local
electrostatic energy that the PC model is trying to approximate
is then exactly the same as that of the exchange-correlation hole
of eq 21.
It is important to stress that the PC cell is not an

approximation to the exchange-correlation hole in the λ →
∞ limit.4 However, its electrostatic energy (electron−back-
ground attraction plus background−background repulsion) is
an approximation to the electrostatic potential of the exchange
correlation hole, eq 11. This concept is further clarified in the
Appendix, where the case of the uniform electron gas at
extreme low density is treated explicitly.
The simplest approximation to the PC cell is a sphere of

uniform density ρ(r) around the electron at position r with a
radius rs(r) = (4π/3ρ(r))−1/3 fixed by the condition that the
fictitious positive background exactly neutralizes the electron at
its center. This leads to the simple PC-LDA approximation4

π ρ= − ⎜ ⎟⎛
⎝

⎞
⎠w r r( ) 9

10
4
3

( )PC
LDA

1/3
1/3

(26)

If we approximate the dipole moment of the cell in terms of the
gradient of the density and we set it equal to zero, we obtain
the PC-GGA expression4
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In Figure 1, we compare the exact λ → ∞ energy densities of
eq 21 with the PC-LDA and PC-GGA approximations of eqs 26
and 27 for the He atom, the sphericalized B and C atoms, and
the Ne atom, using accurate Hylleras and quantum Monte
Carlo densities.55−57 We see that the PC model becomes a
rather good approximation in the valence region of B, C, and
Ne, while being quite poor in the core region, and especially at
the nucleus. The PC-LDA energy density is actually a better
local approximation than the PC-GGA except close to the
nucleus. The PC-GGA performs better globally (see Table 1),

but we clearly see that this is due to an error compensation
between the core region and the intershell region. In the tail of
the density, the PC-GGA energy density of eq 27 diverges.
Notice that the exact SCE energy densities have kinks (clearly
visible in the insets of Figure 1), which occur each time we have
a configuration with one of the electrons at infinity.
The approximations made in the PC model are (i) neglecting

the cell−cell interaction and (ii) the gradient expansion of eqs
26 and 27, which assumes a slowly varying density. At the
nucleus, we can easily construct what would be the “exact” PC

cell, so that we can at least remove approximation ii and check
the effect of approximation i alone. The “exact” PC cell around
the nucleus is the sphere Ω1 of radius a1, with

∫ π ρ =r r r4 ( ) d 1
a

0

21

(28)

and the “exact” value of wPC(r = 0) is

∫ ∫ ∫ρ ρ ρ
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2

d d ( ) ( )
PC

1 1 1
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In Table 2, we compare the values at the nucleus from the exact
SCE, the PC-LDA or PC-GGA (they become equal at the
nucleus), and the result of eq 29 for several atoms. We see that
eq 29 is very accurate for N = 2: in this case, in fact, when the
reference electron is at the nucleus, the other one is at infinity,
so that the cell−cell interaction becomes indeed zero. For N >

Figure 1. Energy density in the gauge of the electrostatic potential of the exchange-correlation hole, eq 11, in the λ → ∞ limit. The exact SCE result
of eq 21 is compared with the PC-LDA and PC-GGA approximations of eqs 26 and 27.

Table 1. Global Value W∞[ρ] = ∫ ρ(r) w∞[ρ](r) dr for Small
Atoms at Different Levels of Approximationa

SCE PC-LDA PC-GGA

H− −0.569 −0.664 −0.559
He −1.498 −1.735 −1.468
Li −2.596 −2.983 −2.556
Be −4.021 −4.561 −3.961
B −5.706 −6.412 −5.650
C −7.781 −8.650 −7.719
Ne −19.993 −21.647 −19.999

aThe SCE corresponds to the exact value, eq 21, while PC-LDA and
PC-GGA correspond, respectively, to eqs 26 and 27.

Table 2. Comparison of the Values at the Nucleus of the
Energy Density in the Gauge of the Exchange-Correlation
Hole Potential in the Strong-Interaction Limit for Small
Atomsa

wSCE(r = 0) wPC
GGA(r = 0) wPC(r = 0)

H− −0.6825 −0.9671 −0.7157
He −1.6883 −2.1729 −1.6672
Li −2.2041 −3.4019 −2.6396
Be −3.1568 −4.6578 −3.6354
B −3.8230 −5.8995 −4.6190
C −4.7727 −7.1446 −5.6050
Ne −8.0276 −12.119 −9.5463

aThe value wSCE(r = 0) corresponds to the exact expression of eq 21.
The value wPC

GGA(r = 0) is the PC gradient expansion approximation of
eqs 26 and 27 (the PC-LDA and PC-GGA are equal at the nucleus),
and wPC(r = 0) is the value from the “exact” PC cell of eq 29.
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2, we see that the “smearing hypothesis,” i.e., the idea that the
cell−cell interaction is negligible, leads to some errors, although
there is an improvement with respect to the gradient expansion
of eqs 26 and 27, reducing the relative error of about a factor 2.
Along these lines, one might try to construct an improved PC
model that performs locally better than the PC-GGA, which, as
we have shown, achieves good global accuracy at the price of
error compensation between different regions of space.

5. ENERGY DENSITIES ALONG THE ADIABATIC
CONNECTION
5.1. Kohn−Sham (λ = 0). At zero coupling strength, the

exact solution for the wave function Ψ0 becomes a Slater
determinant Φ = |ϕ1...ϕN⟩, and the energy density w0[ρ](r) in
the gauge of the exchange-correlation hole is given by the
electrostatic potential of the KS exchange hole hx(r,r′):

∫ρ = ′
| − ′| ′w
h

r
r r

r r
r[ ]( ) 1

2
( , )

d0
x

(30)

as the pair density simply writes

ρ ρ ρ′ = ′ + ′P hr r r r r r r( , ) ( ) ( ) ( ) ( , )x2
0

(31)

In eq 30, one can use the exact exchange hole built from a
Hartee−Fock like expression in terms of the KS orbitals ϕi, or a
density functional approximation for hx(r,r′), e.g., the one of
Becke and Roussel.58 These two choices would correspond,
respectively, to construct a hyper-GGA and a meta-GGA
functional from a local interpolation along the adiabatic
connection.
The aim of the present work is a preliminary study of exact

energy densities along the adiabatic connection. The exact KS
orbitals and the corresponding noninteracting potential V̂ext

0 for
a given physical density can be found accurately, e.g., by
inversion of the KS equations59−64 or by the use of Lieb’s
Legendre transform DFT formalism.34,65,66

For an ISI-like interpolation on the energy density, w0[ρ](r)
will be a key ingredient. Additionally, knowledge of the next
leading order in the asymptotic expansion of the local energy

density around λ = 0 is necessary, but not available yet. The
next leading order in the asymptotic expansion constitutes an
active field of research in our group (see also the discussion in
section 7).

5.2. Physical (λ = 1). To compute the exact energy density
at coupling-strength λ = 1, we resort to

∫ ∫ρ ρ
ρ= ′

| − ′| ′ − ′
| − ′| ′w

P
r

r
r r

r r
r r

r r
r[ ]( ) 1

2 ( )
( , )

d 1
2

( ) d1
2
1

(32)

with the pair density given by the full many-body wave function
Ψ1 in eq 13. The density ρ1(r) corresponding to P2

1(r, r′)
defines the density ρ(r) = ρ1(r) to be held constant along the
adiabatic connection.
The exact w1[ρ](r) can serve as benchmark for models on

wλ[ρ](r) but also gives an estimate of the importance of the
strong-interaction limit in the wλ[ρ](r) model. If the physical
system is close to the KS one, correlation is less important and
already Hartree−Fock should perform well. In this case, we
expect that inclusion of the λ → ∞ information in the wλ[ρ](r)
model will not lead to a major improvement. In contrast, for
more strongly correlated systems the physical energy density
should tend more toward the λ → ∞ limit and the SCE
functional can provide useful input for an accurate model for
wλ[ρ](r). The relevance of the strong-interaction limit will be
discussed in the next section.

5.3. Results. 5.3.1. Coulomb External Potential. We have
performed full-CI calculations in an aug-cc-pVTZ basis for
some two and four electron atoms within the Gamess-US
package67 to obtain an accurate ground state wave function for
the physical interaction strength. Starting from this, we are able
to calculate the energy density in the gauge of the exchange-
correlation hole for λ = 0, 1, ∞.
At λ = 1, we calculate the energy density from the full-CI pair

density, eq 32, with a program similar to the one used for the
calculation of vcond in ref 52.
For the energy density at λ = 0, eq 30, we have to compute

the single particle KS orbitals corresponding to the full-CI

Figure 2. Energy densities in the gauge of the electrostatic potential of the exchange-correlation hole for accurate full-CI densities (aug-cc-pVTZ)
and coupling strength λ = 0,1 and ∞.
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density first. In the case of two electron atoms, they are readily
constructed by the simple relation

ϕ ρ=r r( ) ( )
2 (33)

For the four electron atoms, we choose the scheme of van
Leeuwen et al.60,61 to invert the KS equations. In the strong-
interaction limit, we calculate the energy density within the
SCE concept, see section 4.1 and refs 8 and 9.
In Figure 2, we show the energy densities for λ = 0, 1, ∞ for

two- and four-electron atoms. As expected, He and Be are
relatively weakly correlated, and their λ = 1 energy densities are
much closer to the KS ones than to the SCE ones. Here, a
description at the Hartree−Fock level is very reasonable and
gives indeed at least 98.5% of the total energy. The anion H−,
instead, being a system with a more diffuse density and thus
more correlated, has a physical energy density that is much
more in between the KS and the SCE curves, with a Hartree−
Fock treatment giving only 94% of the total energy. Here, we
expect the inclusion of the information from the strong-
interaction limit to be important. The valence regions of Be and
Li− (see the insets in Figure 2) can also be better described by a
proper inclusion of the λ = ∞ information.
5.3.2. Harmonic External Potential. Another useful class of

systems for investigation of the impact of the strong-interaction
limit on the physical energy density is given by 3D model
quantum dots, also known as Hooke’s atoms. Here, two
electrons (still interacting with the 1/r Coulomb repulsion) are
confined in the harmonic external potential, and correlation
gains importance as the spring constant of the harmonic
potential is lowered. We have computed the energy density for
Hooke’s atoms with spring constants for which the analytic
solution for the wave function can be found.68 The results are
displayed in Figures 3 and 4 for the largest and smallest spring
constant considered. As expected, the physical energy density
comes closer to the SCE energy density in the more strongly

correlated case. Additionally, as a remarkable feature, we
observe that the physical energy density crosses the SCE energy
density. Intuitively, one would expect the physical energy
density to be always in between the KS and SCE energy
densities, as the KS energy density represents the weakest
possible correlation and the SCE energy density the strongest
possible correlation in the given density. However, the wave
functions are chosen according to the global quantities

⟨Ψ| ̂|Ψ⟩ ⇒ Ψ
ρΨ→

Tmin KS (34)

⟨Ψ| ̂ |Ψ⟩ ⇒ Ψ
ρΨ→

Vmin ee SCE (35)

⟨Ψ| ̂ + ̂ |Ψ⟩ ⇒ Ψ
ρ λΨ→ =T Vmin ee 1 (36)

yielding the global inequalities

⟨Ψ | ̂ |Ψ ⟩ ≤ ⟨Ψ | ̂ |Ψ ⟩ ≤ ⟨Ψ | ̂ |Ψ ⟩λ λ= =V V VSCE ee SCE 1 ee 1 KS ee KS (37)

Locally, these inequalities can be violated without violating the
global ones, and hence the physical energy density can go
below the SCE energy density.
The crossing feature can be attributed to “polarization”

effects between the two electrons, reflected in the pair density.
Here, by “polarization” we mean a two-body effect, i.e., how the
position of one electron is influenced by the other.69 When one
of the electrons is at infinity, the other electron will be mainly
found around the origin (where the minimum of the external
potential is located). The physical (λ = 1) description of this
electron is then a charge distribution around the origin. As the
other electron approaches the origin from infinity, this charge
distribution is deformed. For the KS (λ = 0) system, where we
have an independent-electrons picture, this effect is not
contained in the pair density as it would be expressed by a
term of mutual dependence between the positions of the
electrons that cannot arise when we use one-particle orbitals to

Figure 3. Energy densities in the gauge of the electrostatic potential of the exchange-correlation hole for Hooke's atoms with less pronounced
correlation (ω = 0.5) and pronounced correlation (ω = 0.0014).

Figure 4. The same energy densities of Figure 3 multiplied by the density.
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construct the wave function. For the SCE system (λ =∞) there
is a perfect mutual dependence between the two electronic
positions, with zero kinetic energy. In other words, the
electrons are modeled as point charges and not as charge
distributions. The proper description of the “polarization” effect
is thus missing in the SCE wave function and can probably be
recovered, at least partially, by considering the next leading
term in the λ → ∞ expansion, corresponding to zero-point
oscillations around the SCE solution.9

To underline this argument, we have computed the
asymptotic behavior of the physical energy density for the
Hooke’s atom with ω = 0.5 using the asymptotic expansion of
the physical pair density69

ρ ρ
′

′ → − ′ ΔΩ + → ∞
−

P r
r

rr r
r r
( , )

( ) ( )
1 2 cos( ) ... ( )

N 1
(38)

where ρN−1(r′) is the density of the (N − 1)-particle system
and ΔΩ the angle between r and r′. The second order term in
eq 38 represents the mentioned “polarization” correction. As
can be seen from Figure 5, for large |r−r′| the energy density in

the KS and SCE case behaves like −1/2r, which corresponds to
the first order in the expansion of the physical pair density.
Inclusion of the second order term in the energy density gives
essentially the physical behavior and deviates from the KS and
SCE energy densities.
Although the crossing happens in a region in which the

density is very small and thus with an almost negligible
energetic contribution (see Figure 4 for the energetically
meaningful product of wλ times the density), the analysis
presented here can be helpful in constructing models for
wλ[ρ](r). Notice that, instead, with the Coulomb external
potential we always observed, so far, the expected behavior
wλ→∞(r) ≤ wλ=1(r) ≤ wλ=0(r) everywhere.

6. THE LOCAL FORM OF THE LIEB−OXFORD BOUND
The Lieb−Oxford (LO) bound22−24 is a rigorous lower bound
to the indirect part of the electron−electron repulsion energy
W̃[Ψ] associated with a given many-electron wave function Ψ:

∫ρ ρ̃ Ψ ≡ ⟨Ψ| ̂ |Ψ⟩ − ≥ −Ψ ΨW V U C r r[ ] [ ] d ( )ee
4/3

(39)

where ρΨ(r) is the density obtained from the wave function Ψ.
The positive constant C is rigorously known to have a value23,24

C ≤ 1.679. It has been suggested70−72 that a tighter bound can
be obtained by taking the value of C that corresponds to the
low-density limit of the uniform electron gas, C ≈ 1.44, since
the bound is known to be more challenged when the number of
electrons increases23 and when the system has low density.73

The LO bound translates into a lower bound for the
exchange and exchange-correlation functionals:70,73

∫ρ ρ ρ≥ ≥ −E E C r r[ ] [ ] d ( )x xc
4/3

(40)

simply because Ex[ρ] = Wλ=0[ρ] is the indirect Coulomb
repulsion of the Slater determinant of KS orbitals, and Exc[ρ] is
the sum of the indirect Coulomb repulsion of the physical wave
function, Wλ=1[ρ], plus the correlation correction to the kinetic
energy, which is always positive.
The way the LO bound is used in the construction of

approximate functionals is, usually (with the exception of ref
74), by imposing it locally (see, e.g., refs 25 and 27). That is, a
given approximate exchange-correlation functional, Ex(c)

DFA[ρ] =
∫ ρ(r) εx(c)

DFA(r) dr, is required to satisfy

ε ρ≥ −Cr r( ) ( )x(c)
DFA 1/3

(41)

This is a sufficient condition to ensure the global bound of eq
40, but it is by no means necessary (see, e.g., ref 75). In other
words, there is no proof that a local version of the LO bound
should hold. Actually, before even asking whether a local
version of the LO bound does hold or not, we need to
understand to which definition (gauge) of the energy density
the local LO bound of eq 41 applies. In fact, since energy
densities are not uniquely defined, the inequality 41 should be
satisfied only for a well-defined gauge: one can indeed always
add to εx(c)

DFA(r) a quantity that integrates to zero and violates eq
41 in some region of space.
We argue here that (i) the gauge of the local LO bound is the

conventional one of the electrostatic energy of the exchange-
correlation hole and (ii) the local LO bound is then certainly
violated, at least in the tail region of an atom or of a molecule,
and in the bonding region of a stretched molecule. The
argument behind point i is the following. For a given density ρ,
the wave function Ψ[ρ] that maximally challenges11 the LO
bound is the one that minimizes the expectation
⟨Ψ[ρ]|V̂ee|Ψ[ρ]⟩, i.e., by definition, ΨSCE[ρ]. In fact, we also
have

∫ρ ρ ρ ρ≥ ≥ ≥ −∞E E W C r r[ ] [ ] [ ] d ( )x xc
4/3

(42)

In section 4, we have discussed the energy density associated
with W∞[ρ] in the gauge of the electrostatic potential of the
exchange-correlation hole. We have also shown that this energy
density can be approximated by the PC model that considers
the electrostatic energy of a cell around the reference electron
of positive charge ρ+(r) = ρ(r). The LDA version of this
approximation has exactly the same form of the local LO
bound. Moreover, the recently suggested value71 C ≈ 1.44 is
extremely close to the one of the PC-LDA model, CPC ≈ 1.45.
Notice that the fact that the PC model is in the gauge of the
electrostatic energy of the exchange-correlation hole follows
from the properties of the strong-interaction limit of DFT, in
particular eq 24. If the PC model is an approximation in this
gauge, and if the LO bound is locally equal to it, then
conclusion i should follow, although this is not a rigorous

Figure 5. Difference between the energy density and the first order
correction of eq 38, including the Hartree contribution 1/2vH(r) (total
pair density) for the Hooke’s atom with ω = 0.5. The energy densities
are in the gauge of the electrostatic potential of the exchange-
correlation hole and are computed from the KS, physical, and SCE pair
density and are compared with the correction from the second term in
the asymptotic expansion of the physical pair density, eq 38.
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argument, but only a plausible one. Another way to arrive at the
same conclusion comes from the fact that the local form of the
tightened LO bound corresponds to approximate, in each point
of space, the exchange-correlation hole with the one of the
extremely correlated (λ → ∞) electron gas, as illustrated in the
Appendix. This would imply, again, an energy density in the
gauge of the exchange-correlation hole.
We then easily see that the local LO bound of eq 41 is

certainly violated in the tail region of an atom or a molecule,
where the exact energy density in the conventional exchange-
correlation hole gauge goes like −1/(2r) while the right-hand
side of eq 41 decays exponentially. The local bound is also
violated in the bond region of a stretched molecule. As an
example, we show in Figure 6 the energy densities of the

stretched H2 molecule for λ = 0 and λ = 1: with C = 1.44, the
local bound is violated in the bond region when the
internuclear distance is R ≳ 7 au and, with C = 1.67, when R
≳ 8 au. Our results also give formal support to the recent work
of Vilhena et al.,76 who report a detailed investigation of the
consequences of the local LO bound on approximate
functionals. From their work, we see that for the G2 sets, the
violation of the local LO bound happens in energetically
unimportant regions. The bonding region of a stretched
molecule shown in our Figure 6 is also energetically
unimportant. However, the corresponding KS potential in the
same region has important features relevant for a proper
description of the breaking of the bond,52,77 although this is
expected to be a very nonlocal effect.
As a concluding remark, we can say that it is very difficult, or

maybe even impossible, to find a rigorous local lower bound for
the energy density. In fact, we have just seen in section 5 that,
at least for the harmonic external potential, it is not even true
that wλ=1(r) ≥ w∞(r) everywhere. This means that even if we
maximize the correlation between the electrons, we do not
construct a rigorous local lower bound, but only a global one.

7. CONCLUSIONS AND PERSPECTIVES
We have derived an exact expression for the energy density in
the strong-interaction limit of DFT in the gauge of the
exchange-correlation-hole electrostatic potential, and we have
computed it for small atoms and model quantum dots. A
careful analysis of the point-charge plus continuum (PC) model
showed that this approximation is formulated in the same
gauge, and a comparison with the exact results showed that it is
locally reasonable in the atomic valence region.
Our formalism also strongly suggests that the local version of

the Lieb−Oxford bound is formulated in the same conventional
gauge of the exchange-correlation hole, and it is then certainly
violated. Our findings are in agreement with (and give formal
support to) the very recent results of Vilhena et al.76 (which
only appeared when this manuscript was completed). More
generally, our results suggest that it is very difficult (if not
impossible) to derive a rigorous local lower bound for the
energy density.
We have also discussed the idea of a local interpolation along

the adiabatic connection. The values of the local energy density
in the same gauge at λ = 0 and λ = ∞ are now available, either
exactly or in an approximate way. Even if we have found that in
the harmonic external potential the physical energy density is
not always in between the λ = 0 and the λ = ∞ curves, the
regions of space in which the expected order is reversed are
energetically not important. In the external Coulomb potential,
we have found, instead, the expected behavior wλ→∞(r) ≤
wλ=1(r) ≤ wλ=0(r) everywhere.
To really be able to build a local interpolation, at least the

slope at λ = 0 and possibly the next leading term at λ = ∞ are
also needed in a local form, and in the same gauge. A first step
toward the construction of a local slope at λ = 0 is to produce
exact results for this quantity, crucial to assessing approx-
imations. This can be achieved with the Legendre transform
techniques developed in refs 33 and 34 and is currently being
investigated. A possible way, then, to construct an approximate
local slope is to use the so-called “extended Overhauser
model”78−80 locally, in a perturbative way. A local next leading
term at λ = ∞ can also be constructed by deriving the exact
exchange-correlation hole corresponding to the wave function
of the zero-point oscillations, discussed in ref 9. All of these
aspects will be investigated in future works.

■ APPENDIX

A. PC Cell and xc Hole
In this appendix, we clarify the difference between the
exchange-correlation hole and the PC cell by considering the
uniform electron gas in the extreme low-density limit, further
extending the argument already given in the appendix of ref 4.
More than 70 years ago, Wigner81,82 pointed out that

electrons embedded in a compensating uniformly charged
background would crystallize at sufficiently low values of the
density ρ. The SCE construction can be seen as nothing else
than the Wigner idea generalized to a nonuniform density ρ(r).
Indeed, in ref 9 the SCE formalism is presented as a “floating”
Wigner crystal in a non-Euclidean space, with the metric
determined by the density ρ(r).
In the case of the uniform electron gas, the SCE co-motion

functions are simply the positions of the bcc lattice points with
the origin fixed at the reference electron. Notice that the
constraint that the density is uniform, eq 35, forces us to
consider a “floating” Wigner crystal, which corresponds to the

Figure 6. Violation of the local form of the Lieb−Oxford bound for
the stretched H2 molecule.
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linear superposition of all of the possible origins and
orientations of the crystal, thus restoring the translational
symmetry. The exchange-correlation hole ρ(g(r) − 1), with
g(r) the pair-distribution function, can then be simply
constructed by considering that the expected number of
electrons in a spherical shell of radius r and thickness dr around
the reference electron at the origin is given by

ρ π| =dN r g r r r( 0) ( ) 4 d2
(43)

We can then place very narrow normalized Gaussians (almost δ
functions) at the bcc sites around the reference electron and
take the spherical average. This way, we obtain the extreme
low-density limit of g(r). In Figure 7, we compare this low-

density (or SCE) g(r) − 1 with the PC cell c(r) in the same
units, c(r) = −θ(rs − r), with θ(x) the Heaviside step function.
We see that the two are very different, except for r/rs ≤ 1. The
exchange-correlation hole has positive peaks (indicating the
positions of the other electrons) that extend to r → ∞ (perfect
long-range order). Notice that the exchange-correlation hole
for the broken symmetry solution (without translational
invariance) would be, instead, much less structured, but here
we are interested in the solution constrained to the uniform
density. The way the electrostatic energy is calculated from the
PC cell and the exchange-correlation hole is also different:4

∫ρ= −
w

g r
r

r
( ) 1

d
(44)

∫ ∫ ∫ρ ρ= − + ′ ′
| − ′|w c r

r
r c r c rr r

r r
( ) d

2
d d ( ) ( )2

(45)

When we use the exchange-correlation hole to evaluate the
energy, eq 44, we need to evaluate an infinite sum (all the peaks
in Figure 7) which converges very badly (the Madelung sum)
and that can be dealt with, for example, the Ewald method.
When we use the PC cell, instead, we face two very simple,
short-ranged integrals.54 The two results differ only by 0.45%,
as was already noted in ref 83, where it was also proven that the
PC value is a rigorous lower bound for the energy of the
uniform electron gas.
Notice that if, instead, we consider the PC cell as a model for

the exchange correlation hole and we use c(r) in eq 44 instead
of g(r) − 1, we get a very poor result4 with an error of ∼17%.
The PC model does approximate the electrostatic potential of
the exchange-correlation hole by constructing it in a different
way.
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