41,341 research outputs found

    Critical-point finite-size scaling in the microcanonical ensemble

    Full text link
    We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically-divergent heat capacity. The link between the microcanonical entropy and the canonical energy distribution is exploited to establish the former, and corroborate its predicted scaling form, in the case of the 3d Ising universality class. We show that the scaling behavior emerges clearly when one accounts for the effects of the negative background constant contribution to the canonical critical specific heat. We show that this same constant plays a significant role in determining the observed differences between the canonical and microcanonical specific heats of systems of finite size, in the critical region.Comment: 27 pages Revtex, 9 figure

    Readdressing the Fertilizer Problem

    Get PDF
    The production literature has shown that inputs such as fertilizer can be defined as risk-increasing. However, farmers also consistently overapply nitrogen. A model of optimal input use under uncertainty is used to address this paradox. Using experimental data, a stochastic production relationship between yield and soil nitrate is estimated. Numerical results show that input uncertainty may cause farmers to overapply nitrogen. Survey data suggest that farmers are risk averse, but prefer small chances of high yields compared to small chances of crop failures when expected yields are equivalent. Furthermore, yield risk and yield variability are not equivalent.corn, nitrogen fertilizer, risk-increasing, yield risk, Crop Production/Industries,

    Application of ribotyping and IS<i>200</i> fingerprinting to distinguish the five <i>Salmonella</i> serotype O6,7:c:1,5 groups: Choleraesuis <i>sensu stricto</i>, Choleraesuis var. Kunzendorf, Choleraesuis var. Decatur, Paratyphi C, and Typhisuis

    Get PDF
    Sixty-seven strains of the five described Salmonella serotypes having antigens 6,7:c: 1,5, that is S. enterica serotype Choleraesuis sensu stricto, Choleraesuis var. Kunzendorf, Choleraesuis var. Decatur, Paratyphi C, and Typhisuis, were examined for 16S rrn profile ribotype, presence of IS200 and phenotypic characters, including rate of change of flagellar-antigen phase and nutritional character. Choleraesuis sensu stricto and its Kunzendorf variant had related but distinct ribotypes. Therefore, ribotyping appears to be a suitable method for differentiating Choleraesuis non-Kunzendorf from Choleraesuis var. Kunzendorf. Some strains of Paratyphi C had 16S profiles that resembled that of Choleraesuis non-Kunzendorf, while others resembled that of Choleraesuis var. Kunzendorf. The Typhisuis profiles were like those of Choleraesuis non-Kunzendorf, while the Choleraesuis var. Decatur profiles were unlike those of any of the other four groups. Furthermore, IS200 fingerprinting discriminated between Choleraesuis var. Decatur and the other strains with antigenic formula O6,7:c: 1,5, and comparison of IS200 patterns showed a high degree of genetic divergence within Choleraesuis var. Decatur. Our findings show that ribotyping and IS200 fingerprinting, combined with classical microbiological methods, distinguish the groups Choleraesuis non-Kunzendorf, Choleraesuis var. Kunzendorf, Choleraesuis var. Decatur, Paratyphi C and Typhisuis

    The use of otolith morphology to indicate the stock structure of common coral trout (Plectropomus leopardus) on the Great Barrier Reef, Australia

    Get PDF
    We investigated the use of otolith morphology to indicate the stock structure of an exploited serranid coral reef fish, Plectropomus leopardus, on the Great Barrier Reef (GBR), Australia. Otoliths were measured by traditional one-and two-dimensional measures (otolith length, width, area, perimeter, circularity, and rectangularity), as well as by Fourier analysis to capture the finer details of otolith shape. Variables were compared among four regions of the GBR separated by hundreds of kilometers, as well as among three reefs within each region, hundreds of meters to tens of kilometers apart. The temporal stability in otolith structure was examined by comparing two cohorts of fully recruited four-year-old P. leopardus collected two years before and two years after a signif icant disturbance in the southern parts of the GBR caused by a large tropical cyclone in March 1997. Results indicated the presence of at least two stocks of P. leopardus, although the structure of each stock varied depending on the cohort considered. The results highlight the importance of incorporating data from several years in studies using otolith morphology to discriminate temporary and possibly misleading signals from those that indicate persistent spatial structure in stocks. We conclude that otolith morphology can be used as an initial step to direct further research on groups of P. leopardus that have lived at least a part of their life in different environments

    Elliptic instability in the Lagrangian-averaged Euler-Boussinesq-alpha equations

    Full text link
    We examine the effects of turbulence on elliptic instability of rotating stratified incompressible flows, in the context of the Lagragian-averaged Euler-Boussinesq-alpha, or \laeba, model of turbulence. We find that the \laeba model alters the instability in a variety of ways for fixed Rossby number and Brunt-V\"ais\"al\"a frequency. First, it alters the location of the instability domains in the (γ,cosθ)(\gamma,\cos\theta)-parameter plane, where θ\theta is the angle of incidence the Kelvin wave makes with the axis of rotation and γ\gamma is the eccentricity of the elliptic flow, as well as the size of the associated Lyapunov exponent. Second, the model shrinks the width of one instability band while simultaneously increasing another. Third, the model introduces bands of unstable eccentric flows when the Kelvin wave is two-dimensional. We introduce two similarity variables--one is a ratio of the Brunt-V\"ais\"al\"a frequency to the model parameter Υ0=1+α2β2\Upsilon_0 = 1+\alpha^2\beta^2, and the other is the ratio of the adjusted inverse Rossby number to the same model parameter. Here, α\alpha is the turbulence correlation length, and β\beta is the Kelvin wave number. We show that by adjusting the Rossby number and Brunt-V\"ais\"al\"a frequency so that the similarity variables remain constant for a given value of Υ0\Upsilon_0, turbulence has little effect on elliptic instability for small eccentricities (γ1)(\gamma \ll 1). For moderate and large eccentricities, however, we see drastic changes of the unstable Arnold tongues due to the \laeba model.Comment: 23 pages (sigle spaced w/figure at the end), 9 figures--coarse quality, accepted by Phys. Fluid

    The use of chronosequences in studies of ecological succession and soil development

    Get PDF
    1. Chronosequences and associated space-for-time substitutions are an important and often necessary tool for studying temporal dynamics of plant communities and soil development across multiple time-scales. However, they are often used inappropriately, leading to false conclusions about ecological patterns and processes, which has prompted recent strong criticism of the approach. Here, we evaluate when chronosequences may or may not be appropriate for studying community and ecosystem development. 2. Chronosequences are appropriate to study plant succession at decadal to millennial time-scales when there is evidence that sites of different ages are following the same trajectory. They can also be reliably used to study aspects of soil development that occur between temporally linked sites over time-scales of centuries to millennia, sometimes independently of their application to shorter-term plant and soil biological communities. 3. Some characteristics of changing plant and soil biological communities (e.g. species richness, plant cover, vegetation structure, soil organic matter accumulation) are more likely to be related in a predictable and temporally linear manner than are other characteristics (e.g. species composition and abundance) and are therefore more reliably studied using a chronosequence approach. 4. Chronosequences are most appropriate for studying communities that are following convergent successional trajectories and have low biodiversity, rapid species turnover and low frequency and severity of disturbance. Chronosequences are least suitable for studying successional trajectories that are divergent, species-rich, highly disturbed or arrested in time because then there are often major difficulties in determining temporal linkages between stages. 5. Synthesis. We conclude that, when successional trajectories exceed the life span of investigators and the experimental and observational studies that they perform, temporal change can be successfully explored through the judicious use of chronosequences

    Forgiveness in Psychology and Law: The Meeting of Moral Development and Restorative Justice

    Get PDF
    This article discusses the psychological meaning of forgiveness and its relation to the criminal justice system. Includes a discussion of the four phases of the development progression of forgiveness
    corecore