601 research outputs found

    Scarring in a driven system with wave chaos

    Full text link
    We consider acoustic wave propagation in a model of a deep ocean acoustic waveguide with a periodic range-dependence. Formally, the wave field is described by the Schrodinger equation with a time-dependent Hamiltonian. Using methods borrowed from the quantum chaos theory it is shown that in the driven system under consideration there exists a "scarring" effect similar to that observed in autonomous quantum systems.Comment: 5 pages, 7 figure

    Resonances in a trapped 3D Bose-Einstein condensate under periodically varying atomic scattering length

    Full text link
    Nonlinear oscillations of a 3D radial symmetric Bose-Einstein condensate under periodic variation in time of the atomic scattering length have been studied analytically and numerically. The time-dependent variational approach is used for the analysis of the characteristics of nonlinear resonances in the oscillations of the condensate. The bistability in oscillations of the BEC width is invistigated. The dependence of the BEC collapse threshold on the drive amplitude and parameters of the condensate and trap is found. Predictions of the theory are confirmed by numerical simulations of the full Gross-Pitaevski equation.Comment: 17 pages, 10 figures, submitted to Journal of Physics

    Adiabatic Compression of Soliton Matter Waves

    Full text link
    The evolution of atomic solitary waves in Bose-Einstein condensate (BEC) under adiabatic changes of the atomic scattering length is investigated. The variations of amplitude, width, and velocity of soliton are found for both spatial and time adiabatic variations. The possibility to use these variations to compress solitons up to very high local matter densities is shown both in absence and in presence of a parabolic confining potential.Comment: to appear in J.Phys.

    Controlled transport of matter waves in two-dimensional optical lattices

    Full text link
    We propose a method for achieving dynamically controllable transport of highly mobile matter-wave solitons in a driven two-dimensional optical lattice. Our numerical analysis based on the mean-field model and the theory based on the time-averaging approach, demonstrate that a fast time-periodic rocking of the two-dimensional optical lattice enables efficient stabilization and manipulation of spatially localized matter wavepackets via induced reconfigurable mobility channels.Comment: 4 pages, 4 figure

    Modulational and Parametric Instabilities of the Discrete Nonlinear Schr\"odinger Equation

    Get PDF
    We examine the modulational and parametric instabilities arising in a non-autonomous, discrete nonlinear Schr{\"o}dinger equation setting. The principal motivation for our study stems from the dynamics of Bose-Einstein condensates trapped in a deep optical lattice. We find that under periodic variations of the heights of the interwell barriers (or equivalently of the scattering length), additionally to the modulational instability, a window of parametric instability becomes available to the system. We explore this instability through multiple-scale analysis and identify it numerically. Its principal dynamical characteristic is that, typically, it develops over much larger times than the modulational instability, a feature that is qualitatively justified by comparison of the corresponding instability growth rates

    OPTOELECTRONIC PROPERTIES OF CdS – AgInS2 SOLAR CELLS

    Get PDF
    Aim. To conduct experimental studies of optoelectronic properties of CdS - AgInS2 solar cells.Methods. AgInS2 films for solar cell CdS-AgInS2 were obtained by magnetron sputtering of crystalline targets derived from bulk ingots. Cadmium sulfide layers were deposited on the AgInS2 films by an electrochemical method in cadmium salts solution, thiourea and ammonia. AgInS2 bulk crystals were obtained in two stages: a direct fusion of the primary components (99,999) in a stoichiometric ratio, followed by directional solidification in a vertical furnace; re-synthesis has been performed on a staggered basis by heating the obtained ingots at temperatures close to the melting points of elements in the two-zone horizontal furnace.Findings. The paper presents the results of experimental studies of the electrical properties and photosensitivity of CdS-AgInS2 film heterojunction obtained by the magnetron. We measured the current-voltage characteristics and quantum efficiency of photoconversion at temperatures up to 250-356 K. We also identified the short circuit current of up to 25 mA/cm2 and open circuit voltage of 0.38 V.Conclusions. The study of the properties of solar cells in recent years has an important place. The results presented in the work would contribute to more efficient conversion of solar energy into electricity

    Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length

    Full text link
    We consider, by means of the variational approximation (VA) and direct numerical simulations of the Gross-Pitaevskii (GP) equation, the dynamics of 2D and 3D condensates with a scattering length containing constant and harmonically varying parts, which can be achieved with an ac magnetic field tuned to the Feshbach resonance. For a rapid time modulation, we develop an approach based on the direct averaging of the GP equation,without using the VA. In the 2D case, both VA and direct simulations, as well as the averaging method, reveal the existence of stable self-confined condensates without an external trap, in agreement with qualitatively similar results recently reported for spatial solitons in nonlinear optics. In the 3D case, the VA again predicts the existence of a stable self-confined condensate without a trap. In this case, direct simulations demonstrate that the stability is limited in time, eventually switching into collapse, even though the constant part of the scattering length is positive (but not too large). Thus a spatially uniform ac magnetic field, resonantly tuned to control the scattering length, may play the role of an effective trap confining the condensate, and sometimes causing its collapse.Comment: 7 figure

    Negative thermal expansion of MgB2_{2} in the superconducting state and anomalous behavior of the bulk Gr\"uneisen function

    Full text link
    The thermal expansion coefficient α\alpha of MgB2_2 is revealed to change from positive to negative on cooling through the superconducting transition temperature TcT_c. The Gr\"uneisen function also becomes negative at TcT_c followed by a dramatic increase to large positive values at low temperature. The results suggest anomalous coupling between superconducting electrons and low-energy phonons.Comment: 5 figures. submitted to Phys. Rev. Let
    • …
    corecore