5,360 research outputs found

    SAX J1808.4-3658, an accreting millisecond pulsar shining in gamma rays?

    Get PDF
    We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region of 15deg radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6 sigma (Test Statistic TS = 32), with position compatible with that of SAX J1808.4-3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 +- 0.5) x 10-12 erg cm-2 s-1 and the spectrum is well-represented by a power-law function with photon index 2.1 +- 0.1. We searched for significant variation of the flux at the spin frequency of the pulsar and for orbital modulation, taking into account the trials due to the uncertainties in the position, the orbital motion of the pulsar and the intrinsic evolution of the pulsar spin. No significant deviation from a constant flux at any time scale was found, preventing a firm identification via time variability. Nonetheless, the association of the LAT source as the gamma-ray counterpart of SAX J1808.4-3658 would match the emission expected from the millisecond pulsar, if it switches on as a rotation-powered source during X-ray quiescence.Comment: 8 pages, 4 figures, accepted by MNRA

    A self-consistent approach to the reflection component in 4U 1705-44

    Get PDF
    High-resolution spectroscopy has recently revealed in many neutron-star Low-Mass X-ray binaries that the shape of the broad iron line observed in the 6.4-6.97 keV range is consistently well fitted by a relativistically smeared line profile. We show here spectral fitting results using a newly developed self-consistent reflection model on XMM-Newton data of the LMXB 4U 1705-44 during a period when the source was in a bright soft state. This reflection model adopts a blackbody prescription for the shape of the impinging radiation field, that we physically associate with the boundary layer emission. \ua9 2010 American Institute of Physics

    First record of brown long-eared bat Plecotus auritus (Chiroptera: Vespertilionidae) for Sicily island (Italy)

    Get PDF
    The knowledge of the bat fauna of Sicily (Southern Italy) is scarce, fragmentary or sometimes even confusing. A recent review mentioned 20 species for the region, but it is likely that the checklist of bats of Sicily is still far from being exhaustive. To help fill this gap, in the past few years specific studies were carried out on the distribution of bat species in Sicily, especially in the woodlands of the Nebrodi Mountains. In the municipality of Caronia (Messina province) has captured a young female brown long-eared bat Plecotus auritus (Linneaus, 1758). The capture of P. auritus in Sicily represents the first record of brown long-eared bat Plecotus auritus for Sicily island, an interesting biogeographical record, as this bat is mostly known for the north and centre of the Italian peninsul

    Ultrasonic Mean Free Path in a Granular Aluminum Film(Physics)

    Get PDF
    The ultrasonic mean free path has been measured and compared to the electrical mean free path of a thin granular aluminum film. They have been found to differ by an order of magnitude which is believed to indicate that mean free path determined ultrasonically is for the Al metal while the one determined electrically is for the Al-Al_2O_3 matrix structure

    The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

    Get PDF
    We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4m Gran Telescopio Canarias (GTC) in August 2014. Despite the source being in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced at higher frequencies (i.e. the g band). Once the flares were subtracted, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even if a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars is detected. We conclude that the observed flaring could be a manifestation of the presence of an accretion disc in the system. The observed light curve variability could be explained by the presence of a superhump, which might be another proof of the formation of an accretion disc. In particular, the disc at the time of our observations was probably preparing to the new outburst of the source, that happened just a few months later, in 2015.Comment: 6 pages, 2 figures, 1 table. Accepted for publication in A&

    ANALYSIS OF SUB-GRID MODELING EFFECTS IN THE SIMULATION OF THE SINGLE-PHASE TURBULENT FLOW IN AN INDUSTRIAL CYCLONE SEPARATOR

    Get PDF
    In the present work two turbulence modeling approaches, namely Large Eddy Simulation and Detached Eddy Simulation, are employed to predict turbulent, swirling flow within an industrial cyclone separator running at Reynolds number 267,000. The results from three LES models, Smagorinsky, dynamic and Yakhot, and the SST-DES model of Strelets have been compared to experimental results for the average axial and tangential velocities. The Navier-Stokes solver is based on an unstructured, finite volume, cell-centered algorithm such that the details of the geometry can be accurately represented. Based on the comparison with the experimental results, it has been found that the Yakhot model provides the most accurate predictions for the tangential velocities, whereas the dynamic LES and the Smagorinsky models overpredict it and the SST-DES model underpredicts it. However, the conclusions are different regarding the axial velocity. Implications of the turbulence modeling for the particle separation are discussed

    An XMM-Newton and INTEGRAL view on the hard state of EXO 1745-248 during its 2015 outburst

    Get PDF
    CONTEXT - Transient low-mass X-ray binaries (LMXBs) often show outbursts lasting typically a few-weeks and characterized by a high X-ray luminosity (Lx10361038L_{x} \approx 10^{36}-10^{38} erg/sec), while for most of the time they are found in X-ray quiescence (LX10311033L_X\approx10^{31} -10^{33} erg/sec). EXO 1745-248 is one of them. AIMS - The broad-band coverage, and the sensitivity of instrument on board of {\xmm} and {\igr}, offers the opportunity to characterize the hard X-ray spectrum during {\exo} outburst. METHODS - In this paper we report on quasi-simultaneous {\xmm} and {\igr} observations of the X-ray transient {\exo} located in the globular cluster Terzan 5, performed ten days after the beginning of the outburst (on 2015 March 16th) shown by the source between March and June 2015. The source was caught in a hard state, emitting a 0.8-100 keV luminosity of 1037\simeq10^{37}~{\lumcgs}. RESULTS - The spectral continuum was dominated by thermal Comptonization of seed photons with temperature kTin1.3kT_{in}\simeq1.3 keV, by a cloud with moderate optical depth τ2\tau\simeq2 and electron temperature kTe40kT_e\simeq 40 keV. A weaker soft thermal component at temperature kTth0.6kT_{th}\simeq0.6--0.7 keV and compatible with a fraction of the neutron star radius was also detected. A rich emission line spectrum was observed by the EPIC-pn on-board {\xmm}; features at energies compatible with K-α\alpha transitions of ionized sulfur, argon, calcium and iron were detected, with a broadness compatible with either thermal Compton broadening or Doppler broadening in the inner parts of an accretion disk truncated at 20±620\pm6 gravitational radii from the neutron star. Strikingly, at least one narrow emission line ascribed to neutral or mildly ionized iron is needed to model the prominent emission complex detected between 5.5 and 7.5 keV. (Abridged)Comment: 14 pages, 6 figure, 2 tables. Accepted for publication on A&A (21/03/2017

    Spectral evolution of bright NS LMXBs with INTEGRAL: an application of the thermal plus bulk Comptonization model

    Full text link
    The aim of this work is to investigate in a physical and quantitative way the spectral evolution of bright Neutron Star Low-Mass X-ray Binaries (NS LMXBs), with special regard to the transient hard X-ray tails. We analyzed INTEGRAL data for five sources (GX 5-1, GX 349+2, GX 13+1, GX 3+1, GX 9+1) and built broad-band X-ray spectra from JEM-X1 and IBIS/ISGRI data. For each source, X-ray spectra from different states were fitted with the recently proposed model compTB. The spectra have been fit with a two-compTB model. In all cases the first compTB describes the dominant part of the spectrum that we interpret as thermal Comptonization of soft seed photons (< 1 keV), likely from the accretion disk, by a 3-5 keV corona. In all cases, this component does not evolve much in terms of Comptonization efficiency, with the system converging to thermal equilibrium for increasing accretion rate. The second compTB varies more dramatically spanning from bulk plus thermal Comptonization of blackbody seed photons to the blackbody emission alone. These seed photons (R < 12 km, kT_s > 1 keV), likely from the neutron star and the innermost part of the system, the Transition Layer, are Comptonized by matter in a converging flow. The presence and nature of this second compTB component (be it a pure blackbody or Comptonized) are related to the inner local accretion rate which can influence the transient behaviour of the hard tail: high values of accretion rates correspond to an efficient Bulk Comptonization process (bulk parameter delta > 0) while even higher values of accretion rates suppress the Comptonization, resulting in simple blackbody emission (delta=0).Comment: 12 pages, 10 figures, accepted for publication in A&

    Effective Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges

    Full text link
    Computing \emph{all best swap edges} (ABSE) of a spanning tree TT of a given nn-vertex and mm-edge undirected and weighted graph GG means to select, for each edge ee of TT, a corresponding non-tree edge ff, in such a way that the tree obtained by replacing ee with ff enjoys some optimality criterion (which is naturally defined according to some objective function originally addressed by TT). Solving efficiently an ABSE problem is by now a classic algorithmic issue, since it conveys a very successful way of coping with a (transient) \emph{edge failure} in tree-based communication networks: just replace the failing edge with its respective swap edge, so as that the connectivity is promptly reestablished by minimizing the rerouting and set-up costs. In this paper, we solve the ABSE problem for the case in which TT is a \emph{single-source shortest-path tree} of GG, and our two selected swap criteria aim to minimize either the \emph{maximum} or the \emph{average stretch} in the swap tree of all the paths emanating from the source. Having these criteria in mind, the obtained structures can then be reviewed as \emph{edge-fault-tolerant single-source spanners}. For them, we propose two efficient algorithms running in O(mn+n2logn)O(m n +n^2 \log n) and O(mnlogα(m,n))O(m n \log \alpha(m,n)) time, respectively, and we show that the guaranteed (either maximum or average, respectively) stretch factor is equal to 3, and this is tight. Moreover, for the maximum stretch, we also propose an almost linear O(mlogα(m,n))O(m \log \alpha(m,n)) time algorithm computing a set of \emph{good} swap edges, each of which will guarantee a relative approximation factor on the maximum stretch of 3/23/2 (tight) as opposed to that provided by the corresponding BSE. Surprisingly, no previous results were known for these two very natural swap problems.Comment: 15 pages, 4 figures, SIROCCO 201
    corecore