482 research outputs found
Reinventing College Physics for Biologists: Explicating an epistemological curriculum
The University of Maryland Physics Education Research Group (UMd-PERG)
carried out a five-year research project to rethink, observe, and reform
introductory algebra-based (college) physics. This class is one of the Maryland
Physics Department's large service courses, serving primarily life-science
majors. After consultation with biologists, we re-focused the class on helping
the students learn to think scientifically -- to build coherence, think in
terms of mechanism, and to follow the implications of assumptions. We designed
the course to tap into students' productive conceptual and epistemological
resources, based on a theoretical framework from research on learning. The
reformed class retains its traditional structure in terms of time and
instructional personnel, but we modified existing best-practices curricular
materials, including Peer Instruction, Interactive Lecture Demonstrations, and
Tutorials. We provided class-controlled spaces for student collaboration, which
allowed us to observe and record students learning directly. We also scanned
all written homework and examinations, and we administered pre-post conceptual
and epistemological surveys. The reformed class enhanced the strong gains on
pre-post conceptual tests produced by the best-practices materials while
obtaining unprecedented pre-post gains on epistemological surveys instead of
the traditional losses.Comment: 35 pages including a 15 page appendix of supplementary material
Symbolic Manipulators Affect Mathematical Mindsets
Symbolic calculators like Mathematica are becoming more commonplace among
upper level physics students. The presence of such a powerful calculator can
couple strongly to the type of mathematical reasoning students employ. It does
not merely offer a convenient way to perform the computations students would
have otherwise wanted to do by hand. This paper presents examples from the work
of upper level physics majors where Mathematica plays an active role in
focusing and sustaining their thought around calculation. These students still
engage in powerful mathematical reasoning while they calculate but struggle
because of the narrowed breadth of their thinking. Their reasoning is drawn
into local attractors where they look to calculation schemes to resolve
questions instead of, for example, mapping the mathematics to the physical
system at hand. We model the influence of Mathematica as an integral part of
the constant feedback that occurs in how students frame, and hence focus, their
work
Understanding and Affecting Student Reasoning About Sound Waves
Student learning of sound waves can be helped through the creation of
group-learning classroom materials whose development and design rely on
explicit investigations into student understanding. We describe reasoning in
terms of sets of resources, i.e. grouped building blocks of thinking that are
commonly used in many different settings. Students in our university physics
classes often used sets of resources that were different from the ones we wish
them to use. By designing curriculum materials that ask students to think about
the physics from a different view, we bring about improvement in student
understanding of sound waves. Our curriculum modifications are specific to our
own classes, but our description of student learning is more generally useful
for teachers. We describe how students can use multiple sets of resources in
their thinking, and raise questions that should be considered by both
instructors and researchers.Comment: 23 pages, 4 figures, 3 tables, 28 references, 7 notes. Accepted for
publication in the International Journal of Science Educatio
Bandit Models of Human Behavior: Reward Processing in Mental Disorders
Drawing an inspiration from behavioral studies of human decision making, we
propose here a general parametric framework for multi-armed bandit problem,
which extends the standard Thompson Sampling approach to incorporate reward
processing biases associated with several neurological and psychiatric
conditions, including Parkinson's and Alzheimer's diseases,
attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain.
We demonstrate empirically that the proposed parametric approach can often
outperform the baseline Thompson Sampling on a variety of datasets. Moreover,
from the behavioral modeling perspective, our parametric framework can be
viewed as a first step towards a unifying computational model capturing reward
processing abnormalities across multiple mental conditions.Comment: Conference on Artificial General Intelligence, AGI-1
Learning physics in context: a study of student learning about electricity and magnetism
This paper re-centres the discussion of student learning in physics to focus
on context. In order to do so, a theoretically-motivated understanding of
context is developed. Given a well-defined notion of context, data from a novel
university class in electricity and magnetism are analyzed to demonstrate the
central and inextricable role of context in student learning. This work sits
within a broader effort to create and analyze environments which support
student learning in the sciencesComment: 36 pages, 4 Figure
Using resource graphs to represent conceptual change
We introduce resource graphs, a representation of linked ideas used when
reasoning about specific contexts in physics. Our model is consistent with
previous descriptions of resources and coordination classes. It can represent
mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts.
We use resource graphs to describe several forms of conceptual change:
incremental, cascade, wholesale, and dual construction. For each, we give
evidence from the physics education research literature to show examples of
each form of conceptual change. Where possible, we compare our representation
to models used by other researchers. Building on our representation, we
introduce a new form of conceptual change, differentiation, and suggest several
experimental studies that would help understand the differences between
reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the
Physical Review Special Topics Physics Education Research on March 8, 200
Beyond deficit-based models of learners' cognition: Interpreting engineering students' difficulties with sense-making in terms of fine-grained epistemological and conceptual dynamics
Researchers have argued against deficit-based explanations of students'
troubles with mathematical sense-making, pointing instead to factors such as
epistemology: students' beliefs about knowledge and learning can hinder them
from activating and integrating productive knowledge they have. In this case
study of an engineering major solving problems (about content from his
introductory physics course) during a clinical interview, we show that "Jim"
has all the mathematical and conceptual knowledge he would need to solve a
hydrostatic pressure problem that we posed to him. But he reaches and sticks
with an incorrect answer that violates common sense. We argue that his lack of
mathematical sense-making-specifically, translating and reconciling between
mathematical and everyday/common-sense reasoning-stems in part from his
epistemological views, i.e., his views about the nature of knowledge and
learning. He regards mathematical equations as much more trustworthy than
everyday reasoning, and he does not view mathematical equations as expressing
meaning that tractably connects to common sense. For these reasons, he does not
view reconciling between common sense and mathematical formalism as either
necessary or plausible to accomplish. We, however, avoid a potential "deficit
trap"-substituting an epistemological deficit for a concepts/skills deficit-by
incorporating multiple, context-dependent epistemological stances into Jim's
cognitive dynamics. We argue that Jim's epistemological stance contains
productive seeds that instructors could build upon to support Jim's
mathematical sense-making: He does see common-sense as connected to formalism
(though not always tractably so) and in some circumstances this connection is
both salient and valued.Comment: Submitted to the Journal of Engineering Educatio
The Case for Dynamic Models of Learners' Ontologies in Physics
In a series of well-known papers, Chi and Slotta (Chi, 1992; Chi & Slotta,
1993; Chi, Slotta & de Leeuw, 1994; Slotta, Chi & Joram, 1995; Chi, 2005;
Slotta & Chi, 2006) have contended that a reason for students' difficulties in
learning physics is that they think about concepts as things rather than as
processes, and that there is a significant barrier between these two
ontological categories. We contest this view, arguing that expert and novice
reasoning often and productively traverses ontological categories. We cite
examples from everyday, classroom, and professional contexts to illustrate
this. We agree with Chi and Slotta that instruction should attend to learners'
ontologies; but we find these ontologies are better understood as dynamic and
context-dependent, rather than as static constraints. To promote one
ontological description in physics instruction, as suggested by Slotta and Chi,
could undermine novices' access to productive cognitive resources they bring to
their studies and inhibit their transition to the dynamic ontological
flexibility required of experts.Comment: The Journal of the Learning Sciences (In Press
Dynamical model of sequential spatial memory: winnerless competition of patterns
We introduce a new biologically-motivated model of sequential spatial memory
which is based on the principle of winnerless competition (WLC). We implement
this mechanism in a two-layer neural network structure and present the learning
dynamics which leads to the formation of a WLC network. After learning, the
system is capable of associative retrieval of pre-recorded sequences of spatial
patterns.Comment: 4 pages, submitted to PR
Application of Renormalization to Potential Scattering
A recently proposed renormalization scheme can be used to deal with
nonrelativistic potential scattering exhibiting ultraviolet divergence in
momentum space. A numerical application of this scheme is made in the case of
potential scattering with divergence for small r, common in molecular
and nuclear physics, by the use of cut-offs in momentum and configuration
spaces. The cut-off is finally removed in terms of a physical observable and
model-independent result is obtained at low energies. The expected variation of
the off-shell behavior of the t matrix arising from the renormalization scheme
is also discussed.Comment: 15 pages plus 5 figure
- …
