2,396 research outputs found

    Drift- or Fluctuation-Induced Ordering and Self-Organization in Driven Many-Particle Systems

    Full text link
    According to empirical observations, some pattern formation phenomena in driven many-particle systems are more pronounced in the presence of a certain noise level. We investigate this phenomenon of fluctuation-driven ordering with a cellular automaton model of interactive motion in space and find an optimal noise strength, while order breaks down at high(er) fluctuation levels. Additionally, we discuss the phenomenon of noise- and drift-induced self-organization in systems that would show disorder in the absence of fluctuations. In the future, related studies may have applications to the control of many-particle systems such as the efficient separation of particles. The rather general formulation of our model in the spirit of game theory may allow to shed some light on several different kinds of noise-induced ordering phenomena observed in physical, chemical, biological, and socio-economic systems (e.g., attractive and repulsive agglomeration, or segregation).Comment: For related work see http://www.helbing.or

    Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits.

    Get PDF
    BackgroundThere are numerous functional types of retinal ganglion cells (RGCs), each participating in circuits that encode a specific aspect of the visual scene. This functional specificity is derived from distinct RGC morphologies and selective synapse formation with other retinal cell types; yet, how these properties are established during development remains unclear. Islet2 (Isl2) is a LIM-homeodomain transcription factor expressed in the developing retina, including approximately 40% of all RGCs, and has previously been implicated in the subtype specification of spinal motor neurons. Based on this, we hypothesized that Isl2+ RGCs represent a related subset that share a common function.ResultsWe morphologically and molecularly characterized Isl2+ RGCs using a transgenic mouse line that expresses GFP in the cell bodies, dendrites and axons of Isl2+ cells (Isl2-GFP). Isl2-GFP RGCs have distinct morphologies and dendritic stratification patterns within the inner plexiform layer and project to selective visual nuclei. Targeted filling of individual cells reveals that the majority of Isl2-GFP RGCs have dendrites that are monostratified in layer S3 of the IPL, suggesting they are not ON-OFF direction-selective ganglion cells. Molecular analysis shows that most alpha-RGCs, indicated by expression of SMI-32, are also Isl2-GFP RGCs. Isl2-GFP RGCs project to most retino-recipient nuclei during early development, but specifically innervate the dorsal lateral geniculate nucleus and superior colliculus (SC) at eye opening. Finally, we show that the segregation of Isl2+ and Isl2- RGC axons in the SC leads to the segregation of functional RGC types.ConclusionsTaken together, these data suggest that Isl2+ RGCs comprise a distinct class and support a role for Isl2 as an important component of a transcription factor code specifying functional visual circuits. Furthermore, this study describes a novel genetically-labeled mouse line that will be a valuable resource in future investigations of the molecular mechanisms of visual circuit formation

    Evolution of reference networks with aging

    Full text link
    We study the growth of a reference network with aging of sites defined in the following way. Each new site of the network is connected to some old site with probability proportional (i) to the connectivity of the old site as in the Barab\'{a}si-Albert's model and (ii) to τα\tau^{-\alpha}, where τ\tau is the age of the old site. We consider α\alpha of any sign although reasonable values are 0α0 \leq \alpha \leq \infty. We find both from simulation and analytically that the network shows scaling behavior only in the region α<1\alpha < 1. When α\alpha increases from -\infty to 0, the exponent γ\gamma of the distribution of connectivities (P(k)kγP(k) \propto k^{-\gamma} for large kk) grows from 2 to the value for the network without aging, i.e. to 3 for the Barab\'{a}si-Albert's model. The following increase of α\alpha to 1 makes γ\gamma to grow to \infty. For α>1\alpha>1 the distribution P(k)P(k) is exponentional, and the network has a chain structure.Comment: 4 pages revtex (twocolumn, psfig), 5 figure

    Economics-Based Optimization of Unstable Flows

    Full text link
    As an example for the optimization of unstable flows, we present an economics-based method for deciding the optimal rates at which vehicles are allowed to enter a highway. It exploits the naturally occuring fluctuations of traffic flow and is flexible enough to adapt in real time to the transient flow characteristics of road traffic. Simulations based on realistic parameter values show that this strategy is feasible for naturally occurring traffic, and that even far from optimality, injection policies can improve traffic flow. Moreover, the same method can be applied to the optimization of flows of gases and granular media.Comment: Revised version of ``Optimizing Traffic Flow'' (cond-mat/9809397). For related work see http://www.parc.xerox.com/dynamics/ and http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Validation of Dunbar's number in Twitter conversations

    Get PDF
    Modern society's increasing dependency on online tools for both work and recreation opens up unique opportunities for the study of social interactions. A large survey of online exchanges or conversations on Twitter, collected across six months involving 1.7 million individuals is presented here. We test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that users can entertain a maximum of 100-200 stable relationships in support for Dunbar's prediction. The "economy of attention" is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. Inspired by this empirical evidence we propose a simple dynamical mechanism, based on finite priority queuing and time resources, that reproduces the observed social behavior.Comment: 8 pages, 6 figure

    Power-law distributions from additive preferential redistributions

    Full text link
    We introduce a non-growth model that generates the power-law distribution with the Zipf exponent. There are N elements, each of which is characterized by a quantity, and at each time step these quantities are redistributed through binary random interactions with a simple additive preferential rule, while the sum of quantities is conserved. The situation described by this model is similar to those of closed NN-particle systems when conservative two-body collisions are only allowed. We obtain stationary distributions of these quantities both analytically and numerically while varying parameters of the model, and find that the model exhibits the scaling behavior for some parameter ranges. Unlike well-known growth models, this alternative mechanism generates the power-law distribution when the growth is not expected and the dynamics of the system is based on interactions between elements. This model can be applied to some examples such as personal wealths, city sizes, and the generation of scale-free networks when only rewiring is allowed.Comment: 12 pages, 4 figures; Changed some expressions and notations; Added more explanations and changed the order of presentation in Sec.III while results are the sam

    Intermittent exploration on a scale-free network

    Full text link
    We study an intermittent random walk on a random network of scale-free degree distribution. The walk is a combination of simple random walks of duration twt_w and random long-range jumps. While the time the walker needs to cover all the nodes increases with twt_w, the corresponding time for the edges displays a non monotonic behavior with a minimum for some nontrivial value of twt_w. This is a heterogeneity-induced effect that is not observed in homogeneous small-world networks. The optimal twt_w increases with the degree of assortativity in the network. Depending on the nature of degree correlations and the elapsed time the walker finds an over/under-estimate of the degree distribution exponent.Comment: 12 pages, 3 figures, 1 table, published versio

    Maximum flow and topological structure of complex networks

    Full text link
    The problem of sending the maximum amount of flow qq between two arbitrary nodes ss and tt of complex networks along links with unit capacity is studied, which is equivalent to determining the number of link-disjoint paths between ss and tt. The average of qq over all node pairs with smaller degree kmink_{\rm min} is kminckmin_{k_{\rm min}} \simeq c k_{\rm min} for large kmink_{\rm min} with cc a constant implying that the statistics of qq is related to the degree distribution of the network. The disjoint paths between hub nodes are found to be distributed among the links belonging to the same edge-biconnected component, and qq can be estimated by the number of pairs of edge-biconnected links incident to the start and terminal node. The relative size of the giant edge-biconnected component of a network approximates to the coefficient cc. The applicability of our results to real world networks is tested for the Internet at the autonomous system level.Comment: 7 pages, 4 figure

    Coherent Moving States in Highway Traffic (Originally: Moving Like a Solid Block)

    Full text link
    Recent advances in multiagent simulations have made possible the study of realistic traffic patterns and allow to test theories based on driver behaviour. Such simulations also display various empirical features of traffic flows, and are used to design traffic controls that maximise the throughput of vehicles in heavily transited highways. In addition to its intrinsic economic value, vehicular traffic is of interest because it may throw light on some social phenomena where diverse individuals competitively try to maximise their own utilities under certain constraints. In this paper, we present simulation results that point to the existence of cooperative, coherent states arising from competitive interactions that lead to a new phenomenon in heterogeneous highway traffic. As the density of vehicles increases, their interactions cause a transition into a highly correlated state in which all vehicles practically move with the same speed, analogous to the motion of a solid block. This state is associated with a reduced lane changing rate and a safe, high and stable flow. It disappears as the vehicle density exceeds a critical value. The effect is observed in recent evaluations of Dutch traffic data.Comment: Submitted on April 21, 1998. For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://www.parc.xerox.com/dynamics

    Structure of Growing Networks: Exact Solution of the Barabasi--Albert's Model

    Full text link
    We generalize the Barab\'{a}si--Albert's model of growing networks accounting for initial properties of sites and find exactly the distribution of connectivities of the network P(q)P(q) and the averaged connectivity qˉ(s,t)\bar{q}(s,t) of a site ss in the instant tt (one site is added per unit of time). At long times P(q)qγP(q) \sim q^{-\gamma} at qq \to \infty and qˉ(s,t)(s/t)β\bar{q}(s,t) \sim (s/t)^{-\beta} at s/t0s/t \to 0, where the exponent γ\gamma varies from 2 to \infty depending on the initial attractiveness of sites. We show that the relation β(γ1)=1\beta(\gamma-1)=1 between the exponents is universal.Comment: 4 pages revtex (twocolumn, psfig), 1 figur
    corecore