746 research outputs found
Loop and Path Spaces and Four-Dimensional BF Theories: Connections, Holonomies and Observables
We study the differential geometry of principal G-bundles whose base space is
the space of free paths (loops) on a manifold M. In particular we consider
connections defined in terms of pairs (A,B), where A is a connection for a
fixed principal bundle P(M,G) and B is a 2-form on M. The relevant curvatures,
parallel transports and holonomies are computed and their expressions in local
coordinates are exhibited. When the 2-form B is given by the curvature of A,
then the so-called non-abelian Stokes formula follows.
For a generic 2-form B, we distinguish the cases when the parallel transport
depends on the whole path of paths and when it depends only on the spanned
surface. In particular we discuss generalizations of the non-abelian Stokes
formula. We study also the invariance properties of the (trace of the) holonomy
under suitable transformation groups acting on the pairs (A,B).
In this way we are able to define observables for both topological and
non-topological quantum field theories of the BF type. In the non topological
case, the surface terms may be relevant for the understanding of the
quark-confinement problem. In the topological case the (perturbative)
four-dimensional quantum BF-theory is expected to yield invariants of imbedded
(or immersed) surfaces in a 4-manifold M.Comment: TeX, 39 page
Loop observables for BF theories in any dimension and the cohomology of knots
A generalization of Wilson loop observables for BF theories in any dimension
is introduced in the Batalin-Vilkovisky framework. The expectation values of
these observables are cohomology classes of the space of imbeddings of a
circle. One of the resulting theories discussed in the paper has only trivalent
interactions and, irrespective of the actual dimension, looks like a
3-dimensional Chern-Simons theory.Comment: 13 page
Four-Dimensional Yang-Mills Theory as a Deformation of Topological BF Theory
The classical action for pure Yang--Mills gauge theory can be formulated as a
deformation of the topological theory where, beside the two-form field
, one has to add one extra-field given by a one-form which transforms
as the difference of two connections. The ensuing action functional gives a
theory that is both classically and quantistically equivalent to the original
Yang--Mills theory. In order to prove such an equivalence, it is shown that the
dependency on the field can be gauged away completely. This gives rise
to a field theory that, for this reason, can be considered as semi-topological
or topological in some but not all the fields of the theory. The symmetry group
involved in this theory is an affine extension of the tangent gauge group
acting on the tangent bundle of the space of connections. A mathematical
analysis of this group action and of the relevant BRST complex is discussed in
details.Comment: 74 pages, LaTeX, minor corrections; to be published in Commun. Math.
Phy
A real-time compact monitor for environmental radiation: Cosmic rays and radioactivity
We report here about the possibility of using a compact scintillation NaI(Tl) detector, long-term stable and reliable, to monitor separately the components of the environmental radiation, i.e. in the energy range 0.28–2.8 MeV, due to very low energy secondary (Ultrasoft) cosmic radiation and radioactivity, airborne and from environment matter. We suggest some procedures to accomplish time variation analysis, by using a sample of data collected in Bologna
Silicon Photo-Multiplier radiation hardness tests with a beam controlled neutron source
We report radiation hardness tests performed at the Frascati Neutron
Generator on silicon Photo-Multipliers, semiconductor photon detectors built
from a square matrix of avalanche photo-diodes on a silicon substrate. Several
samples from different manufacturers have been irradiated integrating up to
7x10^10 1-MeV-equivalent neutrons per cm^2. Detector performances have been
recorded during the neutron irradiation and a gradual deterioration of their
properties was found to happen already after an integrated fluence of the order
of 10^8 1-MeV-equivalent neutrons per cm^2.Comment: 7 pages, 6 figures, Submitted to Nucl. Inst. Meth.
Link Invariants of Finite Type and Perturbation Theory
The Vassiliev-Gusarov link invariants of finite type are known to be closely
related to perturbation theory for Chern-Simons theory. In order to clarify the
perturbative nature of such link invariants, we introduce an algebra V_infinity
containing elements g_i satisfying the usual braid group relations and elements
a_i satisfying g_i - g_i^{-1} = epsilon a_i, where epsilon is a formal variable
that may be regarded as measuring the failure of g_i^2 to equal 1.
Topologically, the elements a_i signify crossings. We show that a large class
of link invariants of finite type are in one-to-one correspondence with
homogeneous Markov traces on V_infinity. We sketch a possible application of
link invariants of finite type to a manifestly diffeomorphism-invariant
perturbation theory for quantum gravity in the loop representation.Comment: 11 page
4-Dimensional BF Theory as a Topological Quantum Field Theory
Starting from a Lie group G whose Lie algebra is equipped with an invariant
nondegenerate symmetric bilinear form, we show that 4-dimensional BF theory
with cosmological term gives rise to a TQFT satisfying a generalization of
Atiyah's axioms to manifolds equipped with principal G-bundle. The case G =
GL(4,R) is especially interesting because every 4-manifold is then naturally
equipped with a principal G-bundle, namely its frame bundle. In this case, the
partition function of a compact oriented 4-manifold is the exponential of its
signature, and the resulting TQFT is isomorphic to that constructed by Crane
and Yetter using a state sum model, or by Broda using a surgery presentation of
4-manifolds.Comment: 15 pages in LaTe
Braneworld Flux Inflation
We propose a geometrical model of brane inflation where inflation is driven
by the flux generated by opposing brane charges and terminated by the collision
of the branes, with charge annihilation. We assume the collision process is
completely inelastic and the kinetic energy is transformed into the thermal
energy after collision. Thereafter the two branes coalesce together and behave
as a single brane universe with zero effective cosmological constant. In the
Einstein frame, the 4-dimensional effective theory changes abruptly at the
collision point. Therefore, our inflationary model is necessarily 5-dimensional
in nature. As the collision process has no singularity in 5-dimensional
gravity, we can follow the evolution of fluctuations during the whole history
of the universe. It turns out that the radion field fluctuations have a steeply
tilted, red spectrum, while the primordial gravitational waves have a flat
spectrum. Instead, primordial density perturbations could be generated by a
curvaton mechanism.Comment: 11 pages, 6 figures, references adde
Preliminary test results on the new electronic readout of the YAP(S)PET small animal scanner
A small animal PET-SPECT scanner (YAP-(S)PET) prototype was built at the Physics Department of the University of Ferrara and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAP-(S)PET prototype shows very good performances, but needs some improvements before it can be used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact readout electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in this paper
- …