1,865 research outputs found

    Vacuum condensates and `ether-drift' experiments

    Full text link
    The idea of a `condensed' vacuum state is generally accepted in modern elementary particle physics. We argue that this should motivate a new generation of precise `ether-drift' experiments with present-day technology.Comment: Latex file, 12 pages, no figure

    First lattice evidence for a non-trivial renormalization of the Higgs condensate

    Get PDF
    General arguments related to ``triviality'' predict that, in the broken phase of (λΦ4)4(\lambda\Phi^4)_4 theory, the condensate re-scales by a factor $Z_{\phi}$ different from the conventional wavefunction-renormalization factor, $Z_{prop}$. Using a lattice simulation in the Ising limit we measure $Z_{\phi}=m^2 \chi$ from the physical mass and susceptibility and $Z_{prop}$ from the residue of the shifted-field propagator. We find that the two $Z$'s differ, with the difference increasing rapidly as the continuum limit is approached. Since $Z_{\phi}$ affects the relation of to the Fermi constant it can sizeably affect the present bounds on the Higgs mass.Comment: 10 pages, 3 figures, 1 table, Latex2

    The (λΦ4)4(\lambda \Phi^4)_4 theory on the lattice: effective potential and triviality

    Full text link
    We compute numerically the effective potential for the (λΦ4)4(\lambda \Phi^4)_4 theory on the lattice. Three different methods were used to determine the critical bare mass for the chosen bare coupling value. Two different methods for obtaining the effective potential were used as a control on the results. We compare our numerical results with three theoretical descriptions. Our lattice data are in quite good agreement with the ``Triviality and Spontaneous Symmetry Breaking'' picture.Comment: Contribution to the Lattice '97 proceedings, LaTeX, uses espcrc2.sty, 3 page
    • …
    corecore