34 research outputs found

    Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems

    Full text link
    A two dimensional self-gravitating Hamiltonian model made by NN fully-coupled classical particles exhibits a transition from a collapsing phase (CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical point of view, the two phases are characterized by two distinct single-particle motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is observed up to a time Ď„\tau that increases linearly with NN. Therefore, the finite particle number acts like a white noise source for the system, inhibiting anomalous transport at longer times.Comment: 10 pages, Revtex - 3 Figs - Submitted to Physical Review

    First and second order clustering transitions for a system with infinite-range attractive interaction

    Full text link
    We consider a Hamiltonian system made of NN classical particles moving in two dimensions, coupled via an {\it infinite-range interaction} gauged by a parameter AA. This system shows a low energy phase with most of the particles trapped in a unique cluster. At higher energy it exhibits a transition towards a homogenous phase. For sufficiently strong coupling AA an intermediate phase characterized by two clusters appears. Depending on the value of AA the observed transitions can be either second or first order in the canonical ensemble. In the latter case microcanonical results differ dramatically from canonical ones. However, a canonical analysis, extended to metastable and unstable states, is able to describe the microcanonical equilibrium phase. In particular, a microcanonical negative specific heat regime is observed in the proximity of the transition whenever it is canonically discontinuous. In this regime, {\it microcanonically stable} states are shown to correspond to {\it saddles} of the Helmholtz free energy, located inside the spinodal region.Comment: 4 pages, Latex - 3 EPS Figs - Submitted to Phys. Rev.

    A vortex description of the first-order phase transition in type-I superconductors

    Full text link
    Using both analytical arguments and detailed numerical evidence we show that the first order transition in the type-I 2D Abelian Higgs model can be understood in terms of the statistical mechanics of vortices, which behave in this regime as an ensemble of attractive particles. The well-known instabilities of such ensembles are shown to be connected to the process of phase nucleation. By characterizing the equation of state for the vortex ensemble we show that the temperature for the onset of a clustering instability is in qualitative agreement with the critical temperature. Below this point the vortex ensemble collapses to a single cluster, which is a non-extensive phase, and disappears in the absence of net topological charge. The vortex description provides a detailed mechanism for the first order transition, which applies at arbitrarily weak type-I and is gauge invariant unlike the usual field-theoretic considerations, which rely on asymptotically large gauge coupling.Comment: 4 pages, 6 figures, uses RevTex. Additional references added, some small corrections to the tex

    Physical tests for Random Numbers in Simulations

    Full text link
    We propose three physical tests to measure correlations in random numbers used in Monte Carlo simulations. The first test uses autocorrelation times of certain physical quantities when the Ising model is simulated with the Wolff algorithm. The second test is based on random walks, and the third on blocks of n successive numbers. We apply the tests to show that recent errors in high precision simulations using generalized feedback shift register algorithms are due to short range correlations in random number sequences. We also determine the length of these correlations.Comment: 16 pages, Post Script file, HU-TFT-94-

    Long Range Magnetic Order and the Darwin Lagrangian

    Full text link
    We simulate a finite system of NN confined electrons with inclusion of the Darwin magnetic interaction in two- and three-dimensions. The lowest energy states are located using the steepest descent quenching adapted for velocity dependent potentials. Below a critical density the ground state is a static Wigner lattice. For supercritical density the ground state has a non-zero kinetic energy. The critical density decreases with NN for exponential confinement but not for harmonic confinement. The lowest energy state also depends on the confinement and dimension: an antiferromagnetic cluster forms for harmonic confinement in two dimensions.Comment: 5 figure

    Equilibrium and dynamical properties of two dimensional self-gravitating systems

    Full text link
    A system of N classical particles in a 2D periodic cell interacting via long-range attractive potential is studied. For low energy density UU a collapsed phase is identified, while in the high energy limit the particles are homogeneously distributed. A phase transition from the collapsed to the homogeneous state occurs at critical energy U_c. A theoretical analysis within the canonical ensemble identifies such a transition as first order. But microcanonical simulations reveal a negative specific heat regime near UcU_c. The dynamical behaviour of the system is affected by this transition : below U_c anomalous diffusion is observed, while for U > U_c the motion of the particles is almost ballistic. In the collapsed phase, finite NN-effects act like a noise source of variance O(1/N), that restores normal diffusion on a time scale diverging with N. As a consequence, the asymptotic diffusion coefficient will also diverge algebraically with N and superdiffusion will be observable at any time in the limit N \to \infty. A Lyapunov analysis reveals that for U > U_c the maximal exponent \lambda decreases proportionally to N^{-1/3} and vanishes in the mean-field limit. For sufficiently small energy, in spite of a clear non ergodicity of the system, a common scaling law \lambda \propto U^{1/2} is observed for any initial conditions.Comment: 17 pages, Revtex - 15 PS Figs - Subimitted to Physical Review E - Two column version with included figures : less paper waste

    The effect of angular momentum conservation in the phase transitions of collapsing systems

    Full text link
    The effect of angular momentum conservation in microcanonical thermodynamics is considered. This is relevant in gravitating systems, where angular momentum is conserved and the collapsing nature of the forces makes the microcanonical ensemble the proper statistical description of the physical processes. The microcanonical distribution function with non-vanishing angular momentum is obtained as a function of the coordinates of the particles. As an example, a simple model of gravitating particles, introduced by Thirring long ago, is worked out. The phase diagram contains three phases: for low values of the angular momentum LL the system behaves as the original model, showing a complete collapse at low energies and an entropy with a convex intruder. For intermediate values of LL the collapse at low energies is not complete and the entropy still has a convex intruder. For large LL there is neither collapse nor anomalies in the thermodynamical quantities. A short discussion of the extension of these results to more realistic situations is exposed.Comment: Latex, 21 pages, 5 figures. Corrected misprints in some equations and a few clarifying remarks adde
    corecore