70 research outputs found

    Intraosseous Hemangioma of the Left Parietal Bone

    Get PDF
    Background: A 26-year-old male presented with pain in his left tibia. Ultrasonography revealed no abnormalities. Tc-99m-bonescan was requested to rule out stress fracture. The scan confirmed the presence of a left tibial stress fracture, as well as an enhancing lesion in the left parietal bone. The patient had no neurological symptoms

    Development and evaluation of interleukin-2 derived radiotracers for PET imaging of T-cells in mice

    Get PDF
    Recently, N-(4-18F-fluorobenzoyl)-interleukin-2 (18F-FB-IL2) was introduced as a PET tracer for T cell imaging. However, production is complex and time-consuming. Therefore, we developed 2 radiolabeled IL2 variants, namely aluminum 18F-fluoride-(restrained complexing agent)-IL2 (18F-AlF-RESCA-IL2) and 68Ga-gallium-(1,4,7-triazacyclononane-4,7-diacetic acid-1-glutaric acid)-IL2 (68Ga-Ga-NODAGA-IL2), and compared their in vitro and in vivo characteristics with 18F-FB-IL2. Methods: Radiolabeling of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 was optimized, and stability was evaluated in human serum. Receptor binding was studied with activated human peripheral blood mononuclear cells (hPBMCs). Ex vivo tracer biodistribution in immunocompetent BALB/cOlaHsd (BALB/c) mice was performed at 15, 60, and 90 min after tracer injection. In vivo binding characteristics were studied in severe combined immunodeficient (SCID) mice inoculated with activated hPBMCs in Matrigel. Tracer was injected 15 min after hPBMC inoculation, and a 60-min dynamic PET scan was acquired, followed by ex vivo biodistribution studies. Specific uptake was determined by coinjection of tracer with unlabeled IL2 and by evaluating uptake in a control group inoculated with Matrigel only. Results:68Ga-Ga-NODAGA-IL2 and 18F-AlF-RESCA-IL2 were produced with radiochemical purity of more than 95% and radiochemical yield of 13.1% ± 4.7% and 2.4% ± 1.6% within 60 and 90 min, respectively. Both tracers were stable in serum, with more than 90% being intact tracer after 1 h. In vitro, both tracers displayed preferential binding to activated hPBMCs. Ex vivo biodistribution studies on BALB/c mice showed higher uptake of 18F-AlF-RESCA-IL2 than of 18F-FB-IL2 in liver, kidney, spleen, bone, and bone marrow. 68Ga-Ga-NODAGA-IL2 uptake in liver and kidney was higher than 18F-FB-IL2 uptake. In vivo, all tracers revealed uptake in activated hPBMCs in SCID mice. Low uptake was seen after a blocking dose of IL2 and in the Matrigel control group. In addition, 18F-AlF-RESCA-IL2 yielded the highest-contrast PET images of target lymph nodes. Conclusion: Production of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 is simpler and faster than that of 18F-FB-IL2. Both tracers showed good in vitro and in vivo characteristics, with high uptake in lymphoid tissue and hPBMC xenografts

    Lack of implication of estrogen receptors in ovarian toxicity induced by psoralens

    No full text
    International audienc

    Public health in the genomic era: will Public Health Genomics contribute to major changes in the prevention of common diseases?

    Get PDF
    &lt;p&gt;The completion of the Human Genome Project triggered a whole new field of genomic research which is likely to lead to new opportunities for the promotion of population health. As a result, the distinction between genetic and environmental diseases has faded. Presently, genomics and knowledge deriving from systems biology, epigenomics, integrative genomics or genome-environmental interactions give a better insight on the pathophysiology of common diseases. However, it is barely used in the prevention and management of diseases. Together with the boost in the amount of genetic association studies, this demands for appropriate public health actions. The field of Public Health Genomics analyses how genome-based knowledge and technologies can responsibly and effectively be integrated into health services and public policy for the benefit of population health. Environmental exposures interact with the genome to produce health information which may help explain inter-individual differences in health, or disease risk. However today, prospects for concrete applications remain distant. In addition, this information has not been translated into health practice yet. Therefore, evidence-based recommendations are few. The lack of population-based research hampers the evaluation of the impact of genomic applications. Public Health Genomics also evaluates the benefits and risks on a larger scale, including normative, legal, economic and social issues. These new developments are likely to affect all domains of public health and require rethinking the role of genomics in every condition of public health interest. This article aims at providing an introduction to the field of and the ideas behind Public Health Genomics.&lt;/p&gt;</p

    Electric Source Imaging in Presurgical Evaluation of Epilepsy: An Inter-Analyser Agreement Study

    No full text
    Electric source imaging (ESI) estimates the cortical generator of the electroencephalography (EEG) signals recorded with scalp electrodes. ESI has gained increasing interest for the presurgical evaluation of patients with drug-resistant focal epilepsy. In spite of a standardised analysis pipeline, several aspects tailored to the individual patient involve subjective decisions of the expert performing the analysis, such as the selection of the analysed signals (interictal epileptiform discharges and seizures, identification of the onset epoch and time-point of the analysis). Our goal was to investigate the inter-analyser agreement of ESI in presurgical evaluations of epilepsy, using the same software and analysis pipeline. Six experts, of whom five had no previous experience in ESI, independently performed interictal and ictal ESI of 25 consecutive patients (17 temporal, 8 extratemporal) who underwent presurgical evaluation. The overall agreement among experts for the ESI methods was substantial (AC1 = 0.65; 95% CI: 0.59–0.71), and there was no significant difference between the methods. Our results suggest that using a standardised analysis pipeline, newly trained experts reach similar ESI solutions, calling for more standardisation in this emerging clinical application in neuroimaging

    Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels-Alder reactions : potential applications for pretargeted in vivo PET imaging

    Get PDF
    Pretargeted PET imaging has emerged as an effective two-step in vivo approach that combines the superior affinity and selectivity of antibodies with the rapid pharmacokinetics and favorable dosimetry of smaller molecules radiolabeled with short-lived radionuclides. This approach can be based on the bioorthogonal inverse-electron-demand Diels–Alder (IEDDA) reaction between tetrazines and trans-cyclooctene (TCO) derivatives. We aimed to develop new [18F]TCO–dienophiles with high reactivity for IEDDA reactions, and favorable in vivo stability and pharmacokinetics. New dienophiles were synthesized using an innovative micro-flow photochemistry process, and their reaction kinetics with a tetrazine were determined. In vivo stability and biodistribution of the most promising 18F-radiolabeled-TCO-derivative ([18F]3) was investigated, and its potential for in vivo pretargeted PET imaging was assessed in tumor-bearing mice. We demonstrated that [18F]3 is a suitable dienophile for IEDDA reactions and for pretargeting applications

    Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels-Alder reactions : potential applications for pretargeted in vivo PET imaging

    No full text
    Pretargeted PET imaging has emerged as an effective two-step in vivo approach that combines the superior affinity and selectivity of antibodies with the rapid pharmacokinetics and favorable dosimetry of smaller molecules radiolabeled with short-lived radionuclides. This approach can be based on the bioorthogonal inverse-electron-demand Diels–Alder (IEDDA) reaction between tetrazines and trans-cyclooctene (TCO) derivatives. We aimed to develop new [18F]TCO–dienophiles with high reactivity for IEDDA reactions, and favorable in vivo stability and pharmacokinetics. New dienophiles were synthesized using an innovative micro-flow photochemistry process, and their reaction kinetics with a tetrazine were determined. In vivo stability and biodistribution of the most promising 18F-radiolabeled-TCO-derivative ([18F]3) was investigated, and its potential for in vivo pretargeted PET imaging was assessed in tumor-bearing mice. We demonstrated that [18F]3 is a suitable dienophile for IEDDA reactions and for pretargeting applications
    • 

    corecore